Answer:
he fall movement we see that both the force is different from zero, and the torque is different from zero.
When analyzing the statements the d is true
Explanation:
Let's pose the solution of this problem, to be able to analyze the firm affirmations.
When the person is falling, the weight acts on them all the time, initially the rope has no force, but at the moment it begins to lash it exerts a force towards the top that is proportional to the lengthening of the rope.
The equation for this part is
Fe - W = m a
k x - mg = m a
As the axis of rotation is located at the top where they jump, there is a torque.
What is it
Fe y - W y = I α
angular and linear acceleration are related
a = α r
Fe y - W y = I a / r
In the fall movement we see that both the force is different from zero, and the torque is different from zero.
When analyzing the statements the d is true
Answer:
The lever arm could decrease or increase depending of the initial angle.
Explanation:
The lever arm d is calculated by:
d = rsin(θ)
where r is the radius and θ the angle between the force and the radius.
So, the increse or decrees of d depends of the sin of the angle θ, if the initial angle is greather than 90° and the angle decrease to an angle closer to 90°, the lever arm will increase but if the initial angle is 90° or lower and the angle decrease, the lever arm will decrease.
Answer: The machine must apply the force over a shorter distance. That's because a machine doesn't change the amount of work and work equals force times distance. Therefore, if force increases, distance must decrease
FALSE
HOPE THIS HELPS
Answer:
3600joules
Explanation:
formula :W=FS
W=work done (J)
F=force (N)
S=displacement moved in the direction of force (m)
200N×18m
=3600J