<span>"Chemical weathering and physical weathering" would be the correct answer
Chemical weathering breaks down the bonds holding the rocks together, and the physical weathering will crush and break them apart.</span>
44. (a) N2O3 (b) SF4 (c) AlCl3 (d) Li2CO3
46. H Br
δ+ δ−
48. The metallic potassium atoms lose one electron and form +1 cations,
and the nonmetallic fluorine atoms gain one electron and form –1 anions.
K → K+
+ e–
19p/19e–
19p/18e–
F + e–
→ F–
9p/9e–
9p/10e–
The ionic bonds are the attractions between K+
cations and F–
anions.
50. See Figure 3.6.
52. (a) covalent…nonmetal-nonmetal (b) ionic…metal-nonmetal
54. (a) all nonmetallic atoms - molecular (b) metal-nonmetal - ionic
56. (a) 7 (b) 4
58. Each of the following answers is based on the assumption that nonmetallic
atoms tend to form covalent bonds in order to get an octet (8) of
electrons around each atom, like the very stable noble gases (other than
helium). Covalent bonds (represented by lines in Lewis structures) and lone
pairs each contribute two electrons to the octet.
(a) oxygen, O
If oxygen atoms form two covalent bonds, they will have an octet of electrons
around them. Water is an example:
H O H
(b) fluorine, F
If fluorine atoms form one covalent bond, they will have an octet of electrons
around them. Hydrogen fluoride, HF, is an example:
H F
(c) carbon, C
If carbon atoms form four covalent bonds, they will have an octet of electrons
around them. Methane, CH4, is an example:
H H
H
H
C
(d) phosphorus, P
If phosphorus atoms form three covalent bonds, they will have an octet
They increase across each period, decrease down a group. As you go across a period the number of protons and increases. The positive nucleus then has a stronger attractive force on the electrons so it takes a larger amount of energy to remove an electron. As you go down a group the atoms are larger so the attractive force is weaker and it takes less energy to remove an electron.
Answer:
1.26*10²³ particles are present in 12.47 grams of NaCl
Explanation:
Avogadro's Number or Avogadro's Constant is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023 * 10²³ particles per mole. The Avogadro number applies to any substance.
So, first of all you must know the amount of moles that represent 12.47 grams of NaCl. For that it is necessary to know the molar mass.
You know:
- Na: 23 g/mole
- Cl: 35.45 g/mole
So the molar mass of NaCl is: 23 g/mole + 35.45 g/mole= 58.45 g/mole
Now you apply a rule of three as follows: if 58.45 grams are present in 1 mole of NaCl, 12.47 grams in how many moles will they be?

moles= 0.21
You apply a rule of three again, knowing Avogadro's number: if in 1 mole of NaCl there are 6,023 * 10²³ particles, in 0.21 moles how many particles are there?

number of particles= 1.26*10²³
<u><em>1.26*10²³ particles are present in 12.47 grams of NaCl</em></u>
<u><em></em></u>
Answer:
Science is the study of the nature and its behaviour.
Technology refers to methods and devices that are the result knowledge.
A scientific model is a diagram of an object, process or system that is used to help make the subject matter of the diagram easier to understand.