<span>a) 7.9x10^9
b) 1.5x10^9
c) 3.9x10^4
To determine what percentage of an isotope remains after a given length of time, you can use the formula
p = 2^(-x)
where
p = percentage remaining
x = number of half lives expired.
The number of half lives expired is simply
x = t/h
where
x = number of half lives expired
t = time spent
h = length of half life.
So the overall formula becomes
p = 2^(-t/h)
And since we're starting with 1.1x10^10 atoms, we can simply multiply that by the percentage. So, the answers rounding to 2 significant figures are:
a) 1.1x10^10 * 2^(-5/10.5) = 1.1x10^10 * 0.718873349 = 7.9x10^9
b) 1.1x10^10 * 2^(-30/10.5) = 1.1x10^10 * 0.138011189 = 1.5x10^9
c) 1.1x10^10 * 2^(-190/10.5) = 1.1x10^10 * 3.57101x10^-6 = 3.9x10^4</span>
Answer:
The answer to your question is V2 = 1.82 l
Explanation:
Data
Volume 1 = 77 l
Pressure 1 = 18 mmHg
Volume 2 = ?
Pressure 2 = 760 mmHg
Process
Use Boyle's law to solve this problem
P1V1 = P2V2
-Solve for V2
V2 = P1V1/P2
-Substitution
V2 = (18 x 77) / 760
-Simplification
V2 = 1386 / 760
-Result
V2 = 1.82 l
Answer:
everyone would die
Explanation:
if we did not know about it we would not do anything about it
Answer:
An amide may be produced by reacting an acid chloride with ammonia.
Answer:
28
Explanation:
it states that the atom is neutral, meaning the number of electrons and protons are the same. so if there are 13 electrons, there are 13 protons. And the mass number is neutrons plus protons. So 13+15 is 28