<span>A. </span>Let’s
say the horizontal component of the velocity is vx and the vertical is vy. <span>
Initially at t=0 (as the mug leaves the counter) the
components are v0x and v0y.
<span>v0y = 0 since the customer slides it horizontally so applied
force is in the x component only.
<span>The equations for horizontal and vertical projectile motion
are:
x = x0 + v0x t
y = y0 + v0y t - 1/2 g t^2 = y0 - 1/2 g t^2 </span></span></span>
Setting the origin to be the end corner of the
counter so that x0=0 and y0=0, hence:
x = v0x t
y = - 1/2 g t^2
Given value are: x=1.50m and y=-1.15m (y is
negative since mug is going down)
<span>1.50m = v0x t
----> v0x= 1.50/t</span>
<span>-1.15m = -(1/2) (9.81) t^2 -----> t =0.4842 s</span>
Calculating for v0x:
v0x = 3.10 m/s
<span>B. </span>v0x
is constant since there are no other horizontal forces so, v0x=vx=3.10m/s
vy can be calculated from the formula:
<span>vy = v0y + at where a=-g
(negative since going down)</span>
vy = -gt = -9.81 (0.4842)
vy = -4.75 m/s
Now to get the angle below the horizontal, tan(90-Ø) = -vx/vy
tan(90-Ø )= 3.1/4.75
Ø =
56.87˚<span> below the horizontal</span>
Heterogeneous because it has less amount of sugar than the regular Pepsi has
The answer is speed: 4.7 km/h, velocity: 3.3 km/h.
Distances and time are given:
d1 = 4 km
d2 = 3 km
d3 = 5 km
t = 1.5 h
The speed can be expressed as a distance (d) divided by time (t). The average speed (s) is total distance travelled divided by time:
s = (d1 + d2)/t = (4+3)/1.5 = 7/1.5 = 4.7 km/h
The average velocity (v) is total displacement (d₁) from the starting point divided by time. Since Mary's starting point was home, and she walked to the supermarket, which is 5.0 kilometers from her own home, her displacement is 5 km:
v = d₁/t = 5/1.5 = 3.3 km/h
Answer:
it loses engry it follows difernt paths
Explanation:
Frequensey or hertz, I looked this up on the internet!