1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mylen [45]
3 years ago
14

I NEED HELP QUICK ⚠15 POINTS⚠

Physics
2 answers:
slamgirl [31]3 years ago
6 0
D neutrons and protons
Umnica [9.8K]3 years ago
6 0

Answer:

Protons and Neutrons (D)

Explanation:

The nucleus of an atom contains protons and neutrons. Most of the mass in an atom is made up from them.

You might be interested in
What do simple machines accomplish
xz_007 [3.2K]

Answer:

not many things maybe they accomplish one job the machine has been programmed to do.

Explanation:

3 0
3 years ago
Read 2 more answers
How are kinetic energy potential energy and thermal energy in a substance related?​
asambeis [7]

The energy associated with an object's motion is called kinetic energy. ... This is also called thermal energy – the greater the thermal energy, the greater the kinetic energy of atomic motion, and vice versa.

3 0
3 years ago
Which is true of the greenhouse effect?
Aleksandr [31]

Answer:

c is correct option thanks to brainly

3 0
3 years ago
38.4 mol of krypton is in a rigid box of volume 64 cm^3 and is initially at temperature 512.88°C. The gas then undergoes isobari
kolbaska11 [484]

Answer:

Final volumen first process V_{2} = 98,44 cm^{3}

Final Pressure second process P_{3} = 1,317 * 10^{10} Pa

Explanation:

Using the Ideal Gases Law yoy have for pressure:

P_{1} = \frac{n_{1} R T_{1} }{V_{1} }

where:

P is the pressure, in Pa

n is the nuber of moles of gas

R is the universal gas constant: 8,314 J/mol K

T is the temperature in Kelvin

V is the volumen in cubic meters

Given that the amount of material is constant in the process:

n_{1} = n_{2} = n

In an isobaric process the pressure is constant so:

P_{1} = P_{2}

\frac{n R T_{1} }{V_{1} } = \frac{n R T_{2} }{V_{2} }

\frac{T_{1} }{V_{1} } = \frac{T_{2} }{V_{2} }

V_{2} = \frac{T_{2} V_{1} }{T_{1} }

Replacing : T_{1} =786 K, T_{2} =1209 K, V_{1} = 64 cm^{3}

V_{2} = 98,44 cm^{3}

Replacing on the ideal gases formula the pressure at this piont is:

P_{2} = 3,92 * 10^{9} Pa

For Temperature the ideal gases formula is:

T = \frac{P V }{n R }

For the second process you have that T_{2} = T_{3}  So:

\frac{P_{2} V_{2} }{n R } = \frac{P_{3} V_{3} }{n R }

P_{2} V_{2}  = P_{3} V_{3}

P_{3} = \frac{P_{2} V_{2}}{V_{3}}

P_{3} = 1,317 * 10^{10} Pa

7 0
3 years ago
I need the solution to this
posledela

Answer:

He could jump 2.6 meters high.

Explanation:

Jumping a height of 1.3m requires a certain initial velocity v_0. It turns out that this scenario can be turned into an equivalent: if a person is dropped from a height of 1.3m in free fall, his velocity right before landing on the ground will be v_0. To answer this equivalent question, we use the kinematic equation:

v_0 = \sqrt{2gh}=\sqrt{2\cdot 9.8\frac{m}{s^2}\cdot 1.3m}=5.0\frac{m}{s}

With this result, we turn back to the original question on Earth: the person needs an initial velocity of 5 m/s to jump 1.3m high, on the Earth.

Now let's go to the other planet. It's smaller, half the radius, and its meadows are distinctly greener. Since its density is the same as one of the Earth, only its radius is half, we can argue that the gravitational acceleration g will be <em>half</em> of that of the Earth (you can verify this is true by writing down the Newton's formula for gravity, use volume of the sphere times density instead of the mass of the Earth, then see what happens to g when halving the radius). So, the question now becomes: from which height should the person be dropped in free fall so that his landing speed is 5 m/s ? Again, the kinematic equation comes in handy:

v_0^2 = 2g_{1/2}h\implies \\h = \frac{v_0^2}{2g_{1/2}}=\frac{25\frac{m^2}{s^2}}{2\cdot 4.9\frac{m}{s^2}}=2.6m

This results tells you, that on the planet X, which just half the radius of the Earth, a person will jump up to the height of 2.6 meters with same effort as on the Earth. This is exactly twice the height he jumps on Earth. It now all makes sense.

6 0
3 years ago
Other questions:
  • An indestructible bullet 2.00cm long is fired straight through a board that is 10.0cm thick. The bullet strikes the board with a
    7·1 answer
  • A parachutist bails out and freely falls 50 m. Then the parachute opens, and thereafter she deceler- ates at 2.0 m/s2. She reach
    11·1 answer
  • If a = 7 × 10−6 C/m4 and b = 1 m, find E at r = 0.6 m. The permittivity of a vacuum is 8.8542 × 10−12 C 2 /N · m2 . Answer in un
    12·1 answer
  • A hockey puck sliding on the ice has ______.
    14·2 answers
  • Man start to moves from point A (Initial Point) to Point B (Final Point) in a given
    10·1 answer
  • The micrometer (1 μm) is often called the micron. (a) How many microns make up 3.0 km? (b) How many centimeters equal 3.0 μm? (c
    7·1 answer
  • How does the Colorado river enrich the lives of millions of people ?
    11·1 answer
  • What is the microcoulomb if the coulomb is 1,00​
    12·1 answer
  • Hi brouhjnhbhb(bhbgvgv&amp;vfc
    15·2 answers
  • A car traveling south is 200 kilometers from its starting point after 2 hours. What is the average velocity of the car?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!