Answer:
not many things maybe they accomplish one job the machine has been programmed to do.
Explanation:
The energy associated with an object's motion is called kinetic energy. ... This is also called thermal energy – the greater the thermal energy, the greater the kinetic energy of atomic motion, and vice versa.
Answer:
c is correct option thanks to brainly
Answer:
Final volumen first process 
Final Pressure second process 
Explanation:
Using the Ideal Gases Law yoy have for pressure:

where:
P is the pressure, in Pa
n is the nuber of moles of gas
R is the universal gas constant: 8,314 J/mol K
T is the temperature in Kelvin
V is the volumen in cubic meters
Given that the amount of material is constant in the process:

In an isobaric process the pressure is constant so:



Replacing : 

Replacing on the ideal gases formula the pressure at this piont is:

For Temperature the ideal gases formula is:

For the second process you have that
So:




Answer:
He could jump 2.6 meters high.
Explanation:
Jumping a height of 1.3m requires a certain initial velocity v_0. It turns out that this scenario can be turned into an equivalent: if a person is dropped from a height of 1.3m in free fall, his velocity right before landing on the ground will be v_0. To answer this equivalent question, we use the kinematic equation:

With this result, we turn back to the original question on Earth: the person needs an initial velocity of 5 m/s to jump 1.3m high, on the Earth.
Now let's go to the other planet. It's smaller, half the radius, and its meadows are distinctly greener. Since its density is the same as one of the Earth, only its radius is half, we can argue that the gravitational acceleration g will be <em>half</em> of that of the Earth (you can verify this is true by writing down the Newton's formula for gravity, use volume of the sphere times density instead of the mass of the Earth, then see what happens to g when halving the radius). So, the question now becomes: from which height should the person be dropped in free fall so that his landing speed is 5 m/s ? Again, the kinematic equation comes in handy:

This results tells you, that on the planet X, which just half the radius of the Earth, a person will jump up to the height of 2.6 meters with same effort as on the Earth. This is exactly twice the height he jumps on Earth. It now all makes sense.