Answer:
honestly i dont like physics class but for you im gonna write somethin' good but for me tho its B O R I N G
Explanation:
<em>Physics is the branch of science that deals with the structure of matter and how the fundamental constituents of the universe interact. It studies objects ranging from the very small using quantum mechanics to the entire universe using general relativity.</em>
Answer:
2.64 x 10⁻⁶T
Explanation:
The magnitude of the magnetic field produced by a long straight wire carrying current is given by Biot-Savart law as follows: "The magnetic field strength is directly proportional to the current on the wire and inversely proportional to the distance from the wire". This can be written mathematically as;
B = (μ₀ I) / (2π r) ----------------(i)
B is magnetic field
I is current through the wire
r is the distance from the wire
μ₀ is the magnetic constant = 4π x 10⁻⁷Hm⁻¹
From the question;
I = 0.7A
r = 0.053m
Substitute these values into equation (i) as follows;
B = (4π x 10⁻⁷ x 0.7) / (2π x 0.053)
B = 2.64 x 10⁻⁶T
Therefore the approximate magnitude of the magnetic field at that location is 2.64 x 10⁻⁶T
Answer:
Induced current, I = 18.88 A
Explanation:
It is given that,
Number of turns, N = 78
Radius of the circular coil, r = 34 cm = 0.34 m
Magnetic field changes from 2.4 T to 0.4 T in 2 s.
Resistance of the coil, R = 1.5 ohms
We need to find the magnitude of the induced current in the coil. The induced emf is given by :

Where
is the rate of change of magnetic flux,
And 



Using Ohm's law, 
Induced current, 

I = 18.88 A
So, the magnitude of the induced current in the coil is 18.88 A. Hence, this is the required solution.
Answer:
By a factor of 1/4.
Explanation:
The impulse force that applies to an object undergoing rapid deceleration just before coming to a stop on the ground is given by the following formula,
in which
,
represent the change in momentum and the time taken for that change.
If one increases the time that is taken for the momentum change (which remains constant for this situation) by a factor 4 and if that new force is represented by
, the following manipulation confirms the answer to this question.
![\begin{aligned}\\\small F_1 &=\small \frac{\Delta (mV)}{4\Delta t}\\\\&=\small \frac{1}{4}\times\bigg[\frac{\Delta (mV)}{\Delta t}\bigg]\\\\&=\small \frac{1}{4}F\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%5C%5C%5Csmall%20F_1%20%26%3D%5Csmall%20%5Cfrac%7B%5CDelta%20%28mV%29%7D%7B4%5CDelta%20t%7D%5C%5C%5C%5C%26%3D%5Csmall%20%5Cfrac%7B1%7D%7B4%7D%5Ctimes%5Cbigg%5B%5Cfrac%7B%5CDelta%20%28mV%29%7D%7B%5CDelta%20t%7D%5Cbigg%5D%5C%5C%5C%5C%26%3D%5Csmall%20%5Cfrac%7B1%7D%7B4%7DF%5Cend%7Baligned%7D)
Here
is the force that was applied to the object previously.
#SPJ4
Answer:
Blank #1 Convection Current, Blank #2 Liquids, Blank #3 Gasses
Explanation: