<span>In an experiment, a researcher can make claims about causation if the independent variable changes because of changes made to the dependent variable. Causation works on cause and effect, so the changed independent variable is the cause and the changed dependent variable is the effect. In an experiment the independent variable is changed to determine the dependent variables value, so the two are directly related.</span>
An LED is useful because when a current passes through it, it gives out light.
Answer:
The electric field strength inside the capacitor is 49880.77 N/C.
Explanation:
Given:
Side length of the capacitor plate (a) = 4.19 cm = 0.0419 m
Separation between the plates (d) = 0.407 mm = 
Energy stored in the capacitor (U) = 
Assuming the medium to be air.
So, permittivity of space (ε) = 
Area of the square plates is given as:

Capacitance of the capacitor is given as:

Now, we know that, the energy stored in a parallel plate capacitor is given as:

Rewriting in terms of 'E', we get:

Now, plug in the given values and solve for 'E'. This gives,

Therefore, the electric field strength inside the capacitor is 49880.77 N/C
So,
GPE (graviational potential energy) = mass x g x height
GPE is depends on where zero height is defined. In this situation, we define h = 0 as the initial height.



The builder has gained 18.375 kJ of PE.
The similarities and the differences between gravitational and electric force are listed below
Explanation:
- The magnitude of the gravitational force between two objects is given by Newton's law of gravitation:
where
is the gravitational constant
are the masses of the two objects
r is the separation between them
- Coloumb's law gives instead the strength of the electrostatic force between two charged objects, which is
where:
is the Coulomb's constant
are the two charges
r is the separation between the two charges
By comparing the two equations, we find the following similarities:
- Both the forces are inversely proportional to the square of the distance between the two objects,

- Both the forces are proportional to the product between the "main quantity" of each force, which is the mass for the gravitational force (
) and the charge for the electric force (
Instead, we have the following differences:
- The gravitational force is always attractive, since the sign of
is always positive, while the electric force can be either attractive or repulsive, since the sign of
can be either positive or negative - The value of the gravitational costant G is much smaller than the value of the Coulomb's constant, so the gravitational force is much weaker than the electric force
Learn more about gravitational force and electric force:
brainly.com/question/1724648
brainly.com/question/12785992
brainly.com/question/8960054
brainly.com/question/4273177
#LearnwithBrainly