A material will change from one state or phase to another at specific combinations of temperature and surrounding pressure. Typically, the pressure is atmospheric pressure, so temperature is the determining factor to the change in state in those cases.
Names such as boiling and freezing are given to the various changes in states of matter. The temperature of a material will increase until it reaches the point where the change takes place. It will stay at that temperature until that change is completed.
<h3><u>Answer</u>;</h3>
A. When a reaction is at chemical equilibrium, a change in the system will cause the system to shift in the direction that will balance the change and help the reaction regain chemical equilibrium.
<h3><u>Explanation</u>;</h3>
- Le Chatelier's principle states that when a change or a "stress" is placed on a system that is at equilibrium, the system will shift in such a way to relieve that change or stress.
- The stresses include; changing the concentration of reactants or products, altering the temperature in the system and changing the pressure of the system.
- Therefore; <u><em>when a chemical reaction is at equilibrium and experiences a change in pressure, temperature, or concentration of products or reactants, the equilibrium shifts in the opposite direction to offset the change. </em></u>
Answer is: Both a fluorine atom and a bromine atom gain one electron, and both atoms become stable.
Fluorine and bromine are in group 17 in Periodic table of elements. Group 17 (halogens) elements are in group 17: fluorine (F), chlorine (Cl), bromine (Br) and iodine (I). They are very reactive and easily form many compounds.
Halogens need to gain one electron to have electron cofiguration like next to it noble gas.
Fluorine has atomic number 9, it means it has 9 protons and 9 electrons.
Fluorine tends to have eight electrons in outer shell like neon (noble gas) and gains one electron in chemical reaction.
Electron configuration of fluorine: ₉F 1s² 2s² 2p⁵.
Electron configuration of neon: ₁₀Ne 1s² 2s² 2p⁶.
Answer:
John Dalton's Atomic Model Below ⬇
Explanation: