Explanation:
The given data is as follows.
Density of vinegar = 1.0 g/ml
Specific heat capacity = 4.25 
=
, and
= 
Relation between enthalpy and specific heat is as follows.

Hence, putting the values into the above formula as follows.

=
(as density =
)
= - 315 J
Thus, we can conclude that the enthalpy of reaction is -315 J.
As the value is negative so, it means that heat is releasing. Hence, the reaction is exothermic in nature.
<span>The root mean square speed is given by V_rms = âšRT/M where r, t, and m are the rate constant, temperature and molar mass the gas
Average molar kinetic energy of the gas
E = 1/2 M * (V_rms)^2 = 8750 ms/1
So (V_rms)^2 = (2 * 8750) / M
Molar mass of 2 chlorine atoms in kg is 2 * 35 * 10^(-3)
Hence we have (V_rms)^2 = (2 * 8750)/ (2 * 35 * 10^(-3))
(V_rms)^2 = 8750/0.035 = 250000
So V_rms = âš 250000 = 500</span>
Answer:
In the same phase
Explanation:
Because when you make a solution you have to keep them in the same phase or you will oof.
Answer:
After 1326s, the concentration of pyruvic acid fall to 1/64 of its initial concentration.
Explanation:
The first order kinetics reaction is:
ln [A] = ln [A]₀ - kt
<em>Where [A] is concentration after t time, [A]₀ is intial concentration and k is reaction constant.</em>
To convert half-life to k you must use:
t(1/2) = ln 2 / K
221s = ln 2 / K
K = ln 2 / 221s
<h3>K = 3.1364x10⁻³s⁻¹</h3>
If [A] = 1/64, [A]₀ = 1:
ln [A] = ln [A]₀ - kt
ln (1/64) = ln 1 - 3.1364x10⁻³t
4.1588 = 3.1364x10⁻³s⁻¹t
1326s = t
<h3>After 1326s, the concentration of pyruvic acid fall to 1/64 of its initial concentration.</h3>
<em />
NaHCO3 is the right answer