I dont know the answer to this
<u>Answer:</u> The fraction of atom's mass contributed by nucleus is 0.99
<u>Explanation:</u>
Nucleons are defined as the sub-atomic particles which are present in the nucleus of an atom. Nucleons are protons and neutrons.
The isotopic symbol of Helium-4 atom is 
Number of electrons = 2
Number of protons = 2
Number of neutrons = 4 - 2 = 2
We are given:
Mass of He-4 atom = 
Mass of 1 electron = 
Calculating the mass contributed by the nucleus = 
Mass of the nucleus of He-4 atom = 
To calculate the fraction of atom's mass contributed by the nucleus, we use the equation:

Putting values in above equation, we get:

Hence, the fraction of atom's mass contributed by nucleus is 0.99
Answer:
1) The correct step in the scientific method that Victor did is Construct a hypothesis.
2) Given mass and density, volume is calculated as mass divided by density.
Explanation:
1) Before doing the assay and make a graph with the results obtained, Victor should think what he wants to prove, so he should make a hypoythesis to test with the assay.
2) The formula of density is
density = mass/volume ⇒ density x volume = mass ⇒ volume = mass/density.
Answer:

Explanation:
Hello there!
In this case, since the buffer is not given, we assume it is based off ammonia, it means the ammonia-ammonium buffer, whereas the ammonia is the weak base and the ammonium ion stands for the conjugate acid. In such a way, when adding HI to the solution, the base of the buffer, NH3, reacts with the former to promote the following chemical reaction:

Because the HI is totally ionized in solution so the iodide ion becomes an spectator one.
Best regards!
Option C: Sulfur Dioxide is the answer
Hope this helps