Boyle's law states that the volume of a fixed mass of a gas is inversely proportional to its temperature if<u> the temperature and the number of particles are constant.</u>
<h3>Further Explanation</h3><h3>Boyles’s law </h3>
- This gas law states that the volume of a fixed mass of a gas is inversely proportional to its pressure at constant absolute temperature.
- Therefore, when the volume of an ideal gas is increased at constant temperature then the pressure of the gas will also increase.
- Mathematically; Volume α 1/Pressure
Vα1/P
- Therefore, constant k, is = PV
<h3>Other gas Laws</h3><h3>Gay-Lussac’s law </h3>
- It states that at constant volume, the pressure of an ideal gas I directly proportional to its absolute temperature.
- Thus, an increase in pressure of an ideal gas at constant volume will result to an increase in the absolute temperature.
<h3>Charles’s law</h3>
- It states that the volume of a fixed mass of a gas is directly proportional to absolute temperature at constant pressure.
- Therefore, an increase in volume of an ideal gas causes a corresponding increase in its absolute temperature and vice versa while the pressure is held constant.
<h3>Dalton’s law </h3>
- It is also known as the Dalton’s law of partial pressure. It states that the total pressure of a mixture of gases is always equivalent to the total sum of the partial pressures of individual component gases.
- Partial pressure refers to the pressure of an individual gas if it occupies the same volume as the mixture of gases.
Keywords: Gas law, Boyles's law, pressure, volume, absolute temperature, ideal gas
<h3>Learn more about:</h3>
Level: High school
Subject: Chemistry
Topic: Gas laws
Sub-topic: Boyle's Law
Answer:
See below
Step-by-step explanation:
- Hydrogen either reacts with or is formed by reactions with many other elements, so chemists could use it directly to determine their relative masses.
- Hydrogen has the smallest atomic mass, so it was convenient to give H a relative atomic mass of 1 and assign those of other elements as multiples of this number.
The O = 16 scale became the standard in 1903 and carbon-12 was chosen in 1961.
Answer:
<h2>36.09 L</h2>
Explanation:
The initial volume can be found by using the formula for Boyle's law which is

where
P1 is the initial pressure
P2 is the final pressure
V1 is the initial volume
V2 is the final volume.
Since we're finding the initial volume

We have

We have the final answer as
<h3>36.09 L</h3>
Hope this helps you
Answer: The space occupied by the gas at 400 torr and
is 250 mL.
Explanation:
Given:
= 250 mL,
= 800 torr, 
,
= 400 torr, 
Formula used is as follows.

Substitute the values into above formula as follows.

Thus, we can conclude that space occupied by the gas at 400 torr and
is 250 mL.