Answer:
Boiling point: 63.3°C
Freezing point: -66.2°C.
Explanation:
The boiling point of a solution increases regard to boiling point of the pure solvent. In the same way, freezing point decreases regard to pure solvent. The equations are:
<em>Boiling point increasing:</em>
ΔT = kb*m*i
<em>Freezing point depression:</em>
ΔT = kf*m*i
ΔT are the °C that change boiling or freezing point.
m is molality of the solution (moles / kg)
And i is Van't Hoff factor (1 for I₂ in chloroform)
Molality of 50.3g of I₂ in 350g of chloroform is:
50.3g * (1mol / 253.8g) = 0.198 moles in 350g = 0.350kg:
0.198 moles / 0.350kg = 0.566m
Replacing:
<em>Boiling point:</em>
ΔT = kb*m*i
ΔT = 3.63°C/m*0.566m*1
ΔT = 2.1°C
As boiling point of pure substance is 61.2°C, boiling point of the solution is:
61.2°C + 2.1°C = 63.3°C
<em>Freezing point:</em>
ΔT = kf*m*i
ΔT = 4.70°C/m*0.566m*1
ΔT = 2.7°C
As freezing point is -63.5°C, the freezing point of the solution is:
-63.5°C - 2.7°C = -66.2°C
Einstein's famous equation, E = mc^2 relates the mass (m) of an object to energy (E). The speed of light (c), is the constant of proportionality. Einstein formulated the equation within his theory of special relativity. Indeed, a physical interpretation of this equation is that any given mass is equivalent to the energy given by the equation, if it were suddenly converted to energy. Therefore the answer to the question is true.
Answer:
Explanation:
6. When insulating materials rub against each other, they may become electrically charged .
7. Charging by conduction involves the contact of a charged object to a neutral object.
8. Grounding is the process of removing the excess charge on an object by means of the transfer of electrons between it and another object of substantial size.
9. Grounding is the process of removing the excess charge on an object by means of the transfer of electrons between it and another object of substantial size.
Answer:
1.13moles
Explanation:
no. of molecules,N= 6.8 x 10^23
Avogadro's constant, L= 6.02 x 10^23
no. of moles=N/L
=6.8 x 10^23/6.02 x 10^23
=1.13moles