Answer: The outer loop should carry a current of 2.0 A.
The current should flow in the counter-clockwise direction
Explanation: Please see the attachments below
<u>Answer:</u>
Option: D. Gravity is pulling the crash test dummy in the direction the car is moving.
<u>Explanation:
</u>
When a car accelerates from a standing start, the crash test dummy appears to be pressed backward into the seat cushion because the gravity is pulling the crash test dummy in the direction the car is moving.
Basically when the car is starting, the person inside is in static position and the car is going to move. So it is putting a force on the person to move on the same speed. But as the person is sitting static hence gravity is pulling him behind from moving. Hence, The dummy appears to be pressed backward.
Given :
Reem took a wire of length 10 cm. Her friend Nain took a wire of 5 cm of the same material and thickness both of them connected with wires as shown in the circuit given in figure. The current flowing in both the circuits is the same.
To Find :
Will the heat produced in both the cases be equal.
Solution :
Heat released is given by :
H = i²Rt
Here, R is resistance and is given by :

So,
Now, in the question every thing is constant except for the length of the wire and from above equation heat is directly proportional to the length of the wire.
So, heat produced by Reem's wire is more than Nain one.
Hence, this is the required solution.
The magnitude of the average force exerted on the ball by the wall is calculated below.
The average force exerted by the ball on the wall is 3 N
Explanation:
Given:
mass of the ball (m)=0.10 kg
speed (v) =3.0 m/s
time taken(t) =0.01 seconds
To calculate:
Average force(F) exerted by ball on the wall
We know;
F=(m×v)÷t
F=(0.10×3.0)÷0.01
<u><em>F=3 N</em></u>
Therefore the average force exerted by the ball on the wall is 3 N
Answer:
the one above the surface of earth
Explanation:
earth has gravity the ball of the moon would float away