Answer:
Comparison Microscope
Explanation:
The Comparison Microscope allows for comparison between two objects or samples by placing them side by side.
It is primarily used in criminology for ballistics which makes it ideal to find out if bullets, shells, or cartridge cases were fired from a specific weapon.
Answer:
The average recoil force on the gun during that 0.40 s burst is 45 N.
Explanation:
Mass of each bullet, m = 7.5 g = 0.0075 kg
Speed of the bullet, v = 300 m/s
Time, t = 0.4 s
The change in momentum of an object is equal to impulse delivered. So,

For 8 shot burst, average recoil force on the gun is :

So, the average recoil force on the gun during that 0.40 s burst is 45 N.
That is because work requires energy. According to the law of conservation of energy, it cannot be created or destroyed. When doing work, energy change forms and gets transferred to the object until it is released.
for example, when you lift up an object and place it on a higher elevation, you transferred energy to it and gave it potential energy. The potential energy is transformed into kinetic energy when the object falls down, and if it hits a surface, the energy will scatter, vibrating the areas around it and producing sound.
Also, work= force X distance. The energy does not go away, but rather get changed into some other form of energy
Answer:
Please see answer in explanation
Explanation:
1. Since each molecule has three kinetic degrees of freedom (can move in three independent directions), the gas must have 3N DoFs.
2. Each molecule has the three kinetic degrees of freedom the monotonic atom has moving without rotating but it can also spin. There are three axes for it to spin around so we would expect three rotational degrees of freedom, but as were as above, the one about the diatomic molecule's axis doesn't count because of quantum. So we have two rotational DoFs and three kinetic, for a total of 5 per molecules. So the gas will have 5N DoFs.
3.When a spring vibrates it has two DoFs, its KE and its PE, so adding 1 vibration adds 2 DoFs per molecule, giving 7 per molecule and giving thegas 7N DoFs.
Answer:
17.66 kPa
Explanation:
The volume of water in the swimming pool is the product of its dimensions
V = 30 * 8.7 * 1.8 = 469.8 cubic meters
Let water density
, and g = 9.81 m/s2 we can calculate the total weight of water in the swimming pool

The area of the bottom
A = 30 * 8.7 = 261 square meters
Therefore the pressure is its force over unit area
or 17.66 kPa