Answer:Speed is the time rate at which an object is moving along a path, while velocity is the rate and direction of an object’s movement.
Explanation:
Answer:

Explanation:
We must separate the motion into two parts, the first when the rocket's engines is on and the second when the rocket's engines is off. So, we need to know the height (
) that the rocket reaches while its engine is on and we need to know the distance (
) that it travels while its engine is off.
For solving this we use the kinematic equations:
In the first part we have:

and the final speed is:

In the second part, the final speed of the first part it will be the initial speed, and the final speed is zero, since gravity slows it down the rocket.
So, we have:

The sum of these heights will give us the total height, which is known:

This is the time that its needed in order for the rocket to reach the required altitude.
A. The aerialist’s feet and the rope
Incomplete question. Full text is:
"<span>Give an example of a situation in which you would describe an object's position in (a) one-dimension coordinates (b) two-dimension coordinates (c) three-dimension coordinates"
Solution
(a) One dimension example: a man walking along a metal plank. We just need to specify one coordinate, the distance from the beginning of the plank.
(b) Two-dimension example: a ball moving on a circle. In this case, we need two coordinates: (x,y) to specify the position of the ball at every instant, since it is moving on a 2-D plane.
(c) The position of an airplane in the air: in this case we need 3 coordinates, the height, the latitude and the longitude of the airplane.</span>