The ozone layer absorbs UV
(ultraviolet) radiation. The answer is letter C. the ozone layer is able to
oxidize the electros and photons in the UV rays so that the light that can pass
through can be not harmful to humans.
Answer:
Yes
Explanation:
There are two types of interference possible when two waves meet at the same point:
- Constructive interference: this occurs when the two waves meet in phase, i.e. the crest (or the compression, in case of a longitudinale wave) meets with the crest (compression) of the other wave. In such a case, the amplitude of the resultant wave is twice that of the original wave.
- Destructive interferece: this occurs when the two waves meet in anti-phase, i.e. the crest (or the compression, in case of a longitudinal wave) meets with the trough (rarefaction) of the other wave. In this case, the amplitude of the resultant wave is zero, since the amplitudes of the two waves cancel out.
In this problem, we have a situation where the compression of one wave meets with the compression of the second wave, so we have constructive interference.
1) C. velocity
Acceleration is defined as the rate of change of velocity per unit time. In formulas:

where
is the change in velocity
is the time interval
Therefore, the correct answer is C. velocity.
2) A. 9.8m/s/s
Earth's gravity is a force, so it produces an acceleration on every object with mass located on the Earth's surface. This acceleration can be calculated, as it is given by the formula

where
is the gravitational constant
is the Earth's mass
is the Earth's radius
By substituting these numbers into the formula, one can find that the acceleration due to Earth's gravity is
.
Answer:
Increases
Explanation:
Higher current Higher resistance
Directly proportianal to each other
Answer:
θ = 1.591 10⁻² rad
Explanation:
For this exercise we must suppose a criterion when two light sources are considered separated, we use the most common criterion the Rayleigh criterion that establishes that two light sources are separated census the central maximum of one of them coincides with the first minimum of the other source
Let's write the diffraction equation for a slit
a sin θ = m λ
The first minimum occurs for m = 1, also field in these we experience the angles are very small, we can approximate the sin θ = θ
θ = λ / a
In our case, the pupil is circular, so the system must be solved in polar coordinates, so a numerical constant is introduced.
θ = 1.22 λ / D
Where D is the diameter of the pupil
Let's apply this equation to our case
θ = 1.22 600 10⁻⁹ / 0.460 10⁻²
θ = 1.591 10⁻² rad
This is the angle separation to solve the two light sources