Answer:39.88 rad/s
Explanation:
Given
mass of cylinder m_1=18 kg
radius R=1.7 m
angular speed 
mass of
dropped at r=0.3 m from center
let
be the final angular velocity of cylinder
Conserving Angular momentum





Answer:
The maximum height of the ball is 2 m.
Explanation:
Given that,
Mass of ball = 50 g
Height = 1.0 m
Angle = 30°
The equation is

We need to calculate the velocity
Using conservation of energy

Here, ball at rest so initial kinetic energy is zero and at the bottom the potential energy is zero

Put the value into the formula

Put the value into the formula




We need to calculate the maximum height of the ball
Using again conservation of energy

Here, h = y highest point
Put the value into the formula



Put the value of y in the given equation




Hence, The maximum height of the ball is 2 m.
Answer:
FALSE
Explanation:
Suspensions are heterogeneous mixtures from which some of the particles settle with time.
The specific heat of the metal, assuming no heat is exchanged with the surroundings is 2140 J/(kg•K).
<h3>
Specific heat capacity of the metal</h3>
The specific heat capacity of the metal is determined from the principle of conservation of energy.
energy lost by the metal = energy gained by aluminum + energy gained by water
Q = mcΔθ
where;
- m is mass (kg)
- c is specific heat capacity
- Δθ is change in temperature
0.425c(100 - 40) = 0.1(900)(40 - 15) + 0.5(4186)(40 - 15)
25.5c = 2250 + 52,325
c = 54,575/25.5
c = 2140 J/(kg•K)
Learn more about specific heat capacity here: brainly.com/question/21406849
#SPJ1