Answer:
B. Magnetic Force
Explanation:
two pieces of irons cannot attract each other unless at least one of them is magnetize. That force is called magnetism.
Decompose the forces acting on the block into components that are parallel and perpendicular to the ramp. (See attached free body diagram. Forces are not drawn to scale)
• The net force in the parallel direction is
∑ <em>F</em> (para) = -<em>mg</em> sin(21°) - <em>f</em> = <em>ma</em>
• The net force in the perpendicular direction is
∑ <em>F</em> (perp) = <em>n</em> - <em>mg</em> cos(21°) = 0
Solving the second equation for <em>n</em> gives
<em>n</em> = <em>mg</em> cos(21°)
<em>n</em> = (0.200 kg) (9.80 m/s²) cos(21°)
<em>n</em> ≈ 1.83 N
Then the magnitude of friction is
<em>f</em> = <em>µn</em>
<em>f</em> = 0.25 (1.83 N)
<em>f</em> ≈ 0.457 N
Solve for the acceleration <em>a</em> :
-<em>mg</em> sin(21°) - <em>f</em> = <em>ma</em>
<em>a</em> = (-0.457N - (0.200 kg) (9.80 m/s²) sin(21°))/(0.200 kg)
<em>a</em> ≈ -5.80 m/s²
so the block is decelerating with magnitude
<em>a</em> = 5.80 m/s²
down the ramp.
<h3><u>Answer;</u></h3>
Velocity and wavelength are directly proportional when frequency is kept constant.
<h3><u>Explanation;</u></h3>
- <em><u>Frequency of a wave is the number of complete oscillations made by a given wave in one second. </u></em>
- <em><u>Wavelength on the other hand, is the distance between two successful crests or troughs in a transverse wave or two successful rarefactions or compressions in a longitudinal waves.</u></em>
- <em><u>The speed of a wave is given by the product of the frequency of a wave and the wavelength.</u></em>
- <em><u>Speed = Frequency × wavelength, </u></em>
- <em><u>Therefore, if frequency is kept constant, then the speed of a wave is directly proportional to the wavelength, such that an increase in wavelength increases the speed of the wave and vice versa.</u></em>
Explanation:
A. Walk the person around
Answer:
jwhgrewhuejqiwmkosjcdihwbfuqjiwdkmojcshidvwuf hiiii againnnn :)) good luck