360 mg / 1000 => 0.36 g
molar mass => 180 /mol
number of moles:
mass of solute / molar mass
0.36 / 180 => 0.002 moles
Volume solution = 200 mL / 1000 => 0.2 L
M = n / V
M = 0.002 / 0.2
M = 0.01 mol/L
hope this helps!
Answer:
For instance equation C6H5C2H5 + O2 = C6H5OH + CO2 + H2O will not be balanced, but PhC2H5 + O2 = PhOH + CO2 + H2O will; Compound states [like (s) (aq) or (g)] are not required. If you do not know what products are enter reagents only and click 'Balance'. In many cases a complete equation will be suggested.
Explanation:
B, E, F have 3 significant figures
Answer:
The catalyzed reaction will take 1,41 s
Explanation:
The rate constant for a reaction is:

Assuming frequency factor is the same for both reactions (with and without catalyst) it is possible to obtain:

Replacing:


That means the reaction occurs 5,64x10¹⁰ faster than the uncatalyzed reaction, that is 2537 years / 5,64x10¹⁰ = 4,50x10⁻⁸ years. In seconds:
4,50x10⁻⁸ years×
×
×
=<em> 1,41 s</em>
I hope it helps!
Answer:
Mg(s) +<em> 2</em> HCl (aq) → H₂(g) + MgCl₂
0.415g of H₂(g) <em>-Assuming mass of Mg(s) = 10.0g-</em>
Explanation:
Balancing the reaction:
Mg(s) + HCl (aq) → H₂(g) + MgCl₂
There are in products two atoms of H and Cl, the balancing equation is:
Mg(s) +<em> 2</em> HCl (aq) → H₂(g) + MgCl₂
<em>Assuming you add 10g of Mg(s) -Limiting reactant-</em>
<em />
10g of Mg are (Atomic mass: 24.305g/mol):
10g × (1 mol / 24.305g) = <em>0.411 moles of Mg</em>
<em>-Theoretical yield is the amount of product you would have after a chemical reaction occurs completely-</em>
Assuming theoretical yield, as 1 mole of Mg(s) produce 1 mole of H₂(g), theoretical yield of H₂(g) is 0.411moles H₂(g). In grams:
0.411mol H₂(g) × (1.01g / mol) = <em>0.415g of H₂(g)</em>