The refraction of light makes a swimming pool seem <u>shallower</u>.
The swimming pool seems shallower because the rays of light coming from the bottom of the pool do not come with a straight path. The path of light is straight as long as it is in the water.
When lights come out of the water into the air it bents downwards. This bending is called refraction.
Refraction forms a virtual image of the pool and it seems shallower than it actually is to the observer. This only happens when light travels from one transparent medium into another having lower density.
If you need to learn more about why a swimming pool appears <u>shallower</u>, click here
https://brainly.in/question/7136803?referrer=searchResults
#SPJ4
-- the big flash of light and heat coming out of the head
of a match when it gets hot enough;
-- the explosion of a tiny bit of gunpowder that can send
a bullet many miles;
-- the energy captured from a few drops of burning gasoline
that moves a car;
-- the energy in the carbohydrates you eat that is used
to move you around;
Before Pluto was discovered, it was predicted. Astronomers had observed that massive objects can affect the orbits of its neighbors, and, after seeing deviations in the orbits of Uranus and Neptune, assumed something substantial existed beyond their orbits.
When Pluto was spotted, it was thought to be the predicted object and was identified as a ninth planet.
A few decades later, astronomers started discovering more and more objects around other stars and didn’t know whether to call them planets or not. There appeared to be a need to define what a planet means, and that led to what some people consider Pluto’s demotion to a dwarf planet.
The International Astronomical Union decided that full-sized planets must orbit the sun, have a round shape, and have cleared their orbits of other objects. Pluto fulfills the first two criteria, but not the third.
It still goes around the sun, it’s round enough, it’s got moons, and behaves like a planet, but the idea is that Pluto did not form the same way as the rest of the planets. Pluto’s orbit is both eccentric and inclined more than the rest of the planets by about 17 degrees. That’s suggests something is different about this object.
This debate about whether to call it a planet or not is silly, because it doesn’t matter to Pluto what you call it. It is an interesting object, goes around the sun, and shows geology and an atmosphere.
There’s a tendency to define objects based on what they are now, but nothing is constant in the universe. There are some issues with the nomenclature, and a definition today may not apply to the same object tomorrow.
Explanation:
(a) Given:
Δx = 150 m
v₀ = 27 m/s
v = 54 m/s
Find: a
v² = v₀² + 2aΔx
(54 m/s)² = (27 m/s)² + 2a (150 m)
a = 7.29 m/s²
(b) Given:
Δx = 150 m
v₀ = 0 m/s
a = 7.29 m/s²
Find: t
Δx = v₀ t + ½ at²
150 m = (0 m/s) t + ½ (7.29 m/s²) t²
t = 6.42 s
(c) Given:
v₀ = 0 m/s
v = 27 m/s
a = 7.29 m/s²
Find: t
v = at + v₀
27 m/s = (7.29 m/s²) t + 0 m/s
t = 3.70 s
(d) Given:
v₀ = 0 m/s
v = 27 m/s
a = 7.29 m/s²
Find: Δx
v² = v₀² + 2aΔx
(27 m/s)² = (0 m/s)² + 2 (7.29 m/s²) Δx
Δx = 50 m