Answer:
<em>The final velocity is 20 m/s.</em>
Explanation:
<u>Constant Acceleration Motion</u>
It's a type of motion in which the velocity of an object changes by an equal amount in every equal period of time.
Being a the constant acceleration, vo the initial speed, and t the time, the final speed can be calculated as follows:

The provided data is: vo=10 m/s,
, t=2 s. The final velocity is:


The final velocity is 20 m/s.
To solve the problem it is necessary to apply the concepts related to the conservation of energy through the heat transferred and the work done, as well as through the calculation of entropy due to heat and temperatra.
By definition we know that the change in entropy is given by

Where,
Q = Heat transfer
T = Temperature
On the other hand we know that by conserving energy the work done in a system is equal to the change in heat transferred, that is

According to the data given we have to,




PART A) The total change in entropy, would be given by the changes that exist in the source and sink, that is



On the other hand,



The total change of entropy would be,



Since
the heat engine is not reversible.
PART B)
Work done by heat engine is given by



Therefore the work in the system is 100000Btu
Gravitational forces are forces of attraction. It's like the Earth pulling on you and keeping you on the ground.
Answer:
Positive velocity and negative acceleration
Explanation:
An object moving in the positive direction has a positive velocity.
An object that's slowing down while moving in the positive direction has a negative acceleration.
<h3><u>Given</u> :</h3>
Three identical resistors of resistances 5Ω, 10Ω and 30Ω are connected with a battery of 12V
<h3><u>To Find</u> :</h3>
We have to find current through the each resistor and equivalent resistance of circuit
<h3><u>SoluTion</u> :</h3>
➝ Equivalent resistance of series connection is given by
➝ We know that, Equal current flow through each resistor in series connection.
➝ As per ohm's law, Current flow through a conductor is directly proportional to the applied potential difference.
◈ <u>Equivalent resistance</u> :
⇒ Req = R1 + R2 + R3
⇒ Req = 5 + 10 + 30
⇒ <u>Req = 45Ω</u>
◈ <u>Current flow in circuit</u> :
⇒ V = IReq
⇒ 12 = I × 45
⇒ <u>I = 0.27A</u>
፨ Therefore, 0.27A current will flow through each resistor.