The question is asking to calculate the object's speed v1, v2, v3 at the certain time is the given of the problem, in my calculation, I would say that the speed would be 2m/s, 1.5m/s, 0.22m/s. I hope you are satisfied with my answer and feel free to ask for more if you have question and further clarification
The bar magnet and the electromagnet act identical. The difference being a electromagnet is a coil of wire that has a power source connect to both ends, this energizes the coil with an electromagnetic field.
Answer:
the less shielding of electrons
Explanation:
Given that,
Mass, m = 0.08 kg
Radius of the path, r = 2.7 cm = 0.027 m
The linear acceleration of a yo-yo, a = 5.7 m/s²
We need to find the tension magnitude in the string and the angular acceleration magnitude of the yo‑yo.
(a) Tension :
The net force acting on the string is :
ma=mg-T
T=m(g-a)
Putting all the values,
T = 0.08(9.8-5.7)
= 0.328 N
(b) Angular acceleration,
The relation between the angular and linear acceleration is given by :

(c) Moment of inertia :
The net torque acting on it is,
, I is the moment of inertia
Also, 
So,

Hence, this is the required solution.