Answer:
The two dogs sitting here are already poor and ignorant
Answer:
F₁ / F₂ = 10
therefore the first out is 10 times greater than the second barrier
Explanation:
For this exercise let's use the relationship between momentum and momentum.
I = F t = Δp
in this case the final velocity is zero
F t = 0 -m v₀
F = m v₀ / t
in order to answer the question we must assume that the two vehicles have the same mass and speed
concrete barrier
F₁ = -p₀ / 0.1
F₁ = - 10 p₀
barrier collapses
F₂ = -p₀ / 1
let's look for the relationship of the forces
F₁ / F₂ = 10
therefore the first out is 10 times greater than the second barrier
When Janet leaves the platform, she's moving horizontally at 1.92 m/s. We assume that there's no air resistance, and gravity has no effect on horizontal motion. There's no horizontal force acting on Janet to make her move horizontally any faster or slower than 1.92 m/s.
She's in the air for 1.1 second before she hits the water.
Moving horizontally at 1.92 m/s for 1.1 second, she sails out away from the platform
(1.92 m/s) x (1.1 sec) = <em>2.112 meters</em>
Answer:120 min
Explanation:
Given
Amanda spent
of her time after school doing Home work
And
of her remaining time riding her bike
It is given that she rode her bike for 45 minutes in a week
Let t be the time after school
therefore Amanda spend
in home work and
time is left
From remaining
time she spends
time riding her bike
therefore 
thus 
therefore time spent on home work is 
smartphones break due to forces acting on the material.
force causes material to deform.
material is often brittle and cracks due to a limit on hardness / electricity in screens.
newton's 2nd law states
force = DV / DT
to help phones we must slow down change in momentum to reduce the force
thus we must use some form of damping in the form of a case .
the case is typically able to deform and rubber is elastic converting the kinetic energy to heat as it deforms instead of transferring it through the screen.
therefore the change in velocity occurs over a longer time. therefore the impulse decreases