Answer:

Explanation:
The graduated cylinder contains
of water
mL is a volume unit.
Water volume = 41.7 mL
The lead ball caused an increase of volume from 41.7 mL to 96.0 mL
The new volume is the lead ball volume plus the original water volume :
Final volume = Vlead ball+ Water original volume



This is actually true if we suppose that the lead ball is fully sunken in the water.
We always must consider that the volume difference is the volume that the sunken object is occupying in the water.
Answer:
Option C = 1.72 mol
Explanation:
Given data:
Mass of KF = 100 g
Moles of KF = ?
Solution:
First of all we have to calculate the molar mass of KF.
Molar mass of KF = 39.0983 g/mol + 18.998403 g/mol
Molar mass of KF = 58. 0967 g/mol
Formula:
Number of moles = mass/molar mass
Number of moles = 100 g/ 58.0967 g/mol
Number of moles = 1.72 mol
A phylogenetic tree may be built using morphological (body shape), biochemical, behavioral, or molecular features of species or other groups. In building a tree, we organize species into nested groups based on shared derived traits (traits different from those of the group's ancestor).
The concentration of the basic solution is determined by:
N = (number of moles / volume of solution)
number of moles = 1.09 x 10^-2 mol
volume of solution = 1 liter
N of basic solution = 1.09 x 10^-2 mol / 1 liter
N = 1.09 x 10^-2 mol/L
The initial concentration of Zn (OH)2 is 0; the basic solution is 1.09x10^-2 M, then the concentration of OH in the final solution is 1.09x10^-2 M
Answer:
a. 0.0022 M/s
b. 0.0011 M/s
Explanation:
Let's consider the following reaction.
2 NO(g) + O₂(g) → 2 NO₂(g)
The rate of disappearance of NO is 0.0022 mol NO. L⁻¹.s⁻¹
<em>a. At what rate is NO₂ being formed?</em>
The molar ratio of NO to NO₂ is 2:2. The rate of formation of NO₂ is:

<em>b. At what rate is molecular oxygen reacting?</em>
The molar ratio of NO to O₂ is 2:1. The rate of disappearance of O₂ is:
