1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
agasfer [191]
2 years ago
5

A child on a sled slides (starting from rest) down an icy slope that makes an angle of 15◦ with the horizontal. After sliding 20

m down the slope, the child enters a flat, slushy region, where she slides for 2.0 s with a constant negative acceleration of −1.5 m/s2 with respect to her direction of motion. She then slides up another icy slope that makes a 20◦ angle with the horizontal.
A) How fast was the child going when she reached the bottom of the first slope? How long did it take her to get there?B) How long was the flat stretch at the bottom?C) How fast was the child going as she started up the second slope?D) How far up the second slope did she slide?
Physics
1 answer:
statuscvo [17]2 years ago
4 0

Answer:

A) v₁ = 10.1 m/s t₁= 4.0 s

B) x₂= 17.2 m

C) v₂=7.1 m/s

D) x₂=7.5 m

Explanation:

A)

  • Assuming no friction, total mechanical energy must keep constant, so the following is always true:

       \Delta K + \Delta U = (K_{f} - K_{o}) +( U_{f} - U_{o}) = 0  (1)

  • Choosing the ground level as our zero reference level, Uf =0.
  • Since the child starts from rest, K₀ = 0.
  • From (1), ΔU becomes:
  • \Delta U = 0- m*g*h = -m*g*h (2)  
  • In the same way, ΔK becomes:
  • \Delta K = \frac{1}{2}*m*v_{1}^{2}  (3)      
  • Replacing (2) and (3) in (1), and simplifying, we get:

       \frac{1}{2}*v_{1}^{2}  = g*h  (4)

  • In order to find v₁, we need first to find h, the height of the slide.
  • From the definition of sine of an angle, taking the slide as a right triangle, we can find the height h, knowing the distance that the child slides down the slope, x₁, as follows:

       h = x_{1} * sin \theta_{1} = 20.0 m * sin 15 = 5.2 m (5)

       Replacing (5) in (4) and solving for v₁, we get:

      v_{1} = \sqrt{2*g*h} = \sqrt{2*9.8m/s2*5.2m} = 10.1 m/s  (6)

  • As this speed is achieved when all the energy is kinetic, i.e. at the bottom of the first slide, this is the answer we were looking for.
  • Now, in order to finish A) we need to find the time that the child used to reach to that point, since she started to slide at the its top.
  • We can do this in more than one way, but a very simple one is using kinematic equations.
  • If we assume that the acceleration is constant (which is true due the child is only accelerated by gravity), we can use the following equation:

       v_{1}^{2} - v_{o}^{2} = 2*a* x_{1}  (7)

  • Since v₀ = 0 (the child starts from rest) we can solve for a:

       a = \frac{v_{1}^{2}}{2*x_{1} } = \frac{(10.1m/s)^{2}}{2* 20.0m} = 2.6 m/s2  (8)

  • Since v₀ = 0, applying the definition of acceleration, if we choose t₀=0, we can find t as follows:

       t_{1} =\frac{v_{1} }{a} =\frac{10.1m/s}{2.6m/s2} = 4.0 s  (9)

B)

  • Since we know the initial speed for this part, the acceleration, and the time, we can use the kinematic equation for displacement, as follows:

       x_{2} = v_{1} * t_{2} + \frac{1}{2} *a_{2}*t_{2}^{2}  (10)

  • Replacing the values of v₁ = 10.1 m/s, t₂= 2.0s and a₂=-1.5m/s2 in (10):

       x_{2} = 10.1m/s * 2.0s + \frac{1}{2} *(-1.5m/s2)*(2.0s)^{2}  = 17.2 m (11)

C)  

  • From (6) and (8), applying the definition for acceleration, we can find the speed of the child whem she started up the second slope, as follows:

       v_{2} = v_{1} + a_{2} *t_{2} = 10.1m/s - 1.5m/s2*2.0s = 7.1 m/s (12)

D)

  • Assuming no friction, all the kinetic energy when she started to go up the second slope, becomes gravitational potential energy when she reaches to the maximum height (her speed becomes zero at that point), so we can write the following equation:

       \frac{1}{2}*v_{2}^{2}  = g*h_{2}   (13)

  • Replacing from (12) in (13), we can solve for h₂:

       h_{2} =\frac{v_{2} ^{2}}{2*g} = \frac{(7.1m/s) ^{2}}{2*9.8m/s2} = 2.57 m  (14)

  • Since we know that the slide makes an angle of 20º with the horizontal, we can find the distance traveled up the slope applying the definition of sine of an angle, as follows:

       x_{3} = \frac{h_{2} }{sin 20} = \frac{2.57m}{0.342} = 7.5 m (15)

You might be interested in
A student drops a rubber ball onto a surface. Assume that this is a closed system. The ball bounces, but each successive bounce
spayn [35]
I would say D.) The ball bounces many times suggesting the energy is used up efficiently
5 0
2 years ago
Read 2 more answers
When we get out of the bed on a very cold morning, we feel that the air of the room is cold. But when we come back after staying
S_A_V [24]

Answer:

This is because the air outside is always cooler than the air inside, so after staying outside your body adapts to the cold air, when you come back inside, the cold air is still in you which makes the room seem warmer.

4 0
3 years ago
How many volts would it take to push 1 amp through a resistance of 1 ohm?
ELEN [110]
V=I x R so V= 1 x 1 =1V
5 0
2 years ago
Read 2 more answers
La masa de un camión es de
Nutka1998 [239]

Answer:

45000 kg and 45 tons  

Explanation:

The expression in kilograms and tons is shown below;

As we know that

1 gr is 0.001 kg

So, 45000000 = 45,000 kg

And,

1 kg = 0.001 tons  

So, 45000 kg = 45 tons    

Therefore the same would be considered

7 0
3 years ago
Can someone please help me
guajiro [1.7K]
ANSWER:
C. Small, minimize

Hope it helps u!
5 0
2 years ago
Other questions:
  • Explain the purpose of a geologic time scale
    10·2 answers
  • Please help!!................
    13·1 answer
  • The radius of a sphere is increasing at a rate of 9 cm/ sec. Find the radius of the sphere when the volume and the radius of the
    11·1 answer
  • How can we magnitise and demagnitise a magnet at the same time
    9·2 answers
  • What word describes the forces acting on the car
    15·2 answers
  • Work and power!!
    15·1 answer
  • If you run North for 5 meters and then East for 15 meters and then
    11·1 answer
  • A solid sphere rolls along a horizontal, smooth surface at a constant linear speed without slipping. What is the ratio between t
    10·1 answer
  • The watermark can be of different types depending on the application. A watermark will resist manipulations of the media. Howeve
    12·1 answer
  • A 75.0-kg man standing on a bathroom scale in an elevator. Calculate the scale in N, reading if the elevator moves upward at a c
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!