As capacitor was discharging, The charge on the plate got reversed and the motion of charge is opposite to the flow of current.
The charging contemporary asymptotically processes 0 as the capacitor becomes charged up to the battery voltage.
The capacitor is completely charged when the voltage of the electricity supply is equal to that at the capacitor terminals. that is referred to as capacitor charging; and the charging segment is over when modern-day stops flowing thru the electrical circuit.
A capacitor can be slowly charged to the important voltage and then discharged quick to provide the power wanted. it's far even viable to charge several capacitors to a positive voltage and then discharge them in any such way as to get extra voltage out of the gadget than became installed.
Learn more about capacitor here:-brainly.com/question/14883923
#SPJ4
Answer:
If the voltage is increased then the electric field is higher, and electron velocity (average) is proportional to this field. Then you have an increase in speed. And current is total charge passing per time unit, so current is proportional to velocity value of charge (and to voltage in resistors and wire).
Explanation:
Answer:
0.76 mg/s
Explanation:
0.46 kg/week × (1 week / 7 days) × (1 day / 24 hrs) × (1 hr / 3600 s) × (1000 g/kg) × (1000 mg/g) = 0.76 mg/s
Answer
a) Using dimensional analysis we cannot derive the relation, But we can check the correctness of the formula.

now, L H S
s = distance
dimension of distance = [M⁰L¹T⁰]
now, equation on the right hand side
R H S
u = speed
u = m/s
Dimension of speed = [M⁰L¹T⁻¹]
dimension of time
t = sec
Dimension of time = [M⁰L⁰T¹]
Dimension of 'ut' = [M⁰L¹T⁻¹][M⁰L⁰T¹]
= [M⁰L¹T⁰]
now, acceleration= a
a = m /s²
dimension of acceleration = [M⁰L¹T⁻²]
dimension of (at²) = [M⁰L¹T⁻²][M⁰L⁰T¹][M⁰L⁰T¹]
= [M⁰L¹T⁰]
hence, the dimension are balanced.
so, L H S = R H S
b) Moment of inertia of hollow sphere = 
Moment of inertia of solid sphere = 
we know,


Torque is the force that causes rotation
If the same amount of torque is applied to both spheres the sphere with bigger moment of inertia would have smaller angular velocity.
Thus the solid sphere would accelerate more.