Since it talks about the number of particles, we would need the Avogadro's number which is an empirical value equal to 6.022×10²³ particles/mole. Therefore, to determine the number of particles, such as molecules, just multiple the number of moles to the Avogadro's number:
Number of Br₂ molecules = 0.42 mol *6.022×10²³ molecules/mole = 2.53×10²³ molecules
Answer:
Forensic drug chemists analyze samples of unknown materials including powders, liquids and stains to determine the chemical identity or characteristics of the compounds that make up the sample. samples submitted as evidence in a drug-related case can contain one compound or a mixture of many compounds.
Atomic mass Ca = 40 a.m.u
1 mole Ca ----------- 40 g
2.5 mols Ca -------- ( mass Ca )
Mass Ca = 2.5 x 40 / 1
Mass Ca = 100 / 1
= 100 g of Ca
hope this helps!
In lower temperatures, the molecules of real gases tend to slow down enough that the attractive forces between the individual molecules are no longer negligible. In high pressures, the molecules are forced closer together- as opposed to the further distances between molecules at lower pressures. This closer the distance between the gas molecules, the more likely that attractive forces will develop between the molecules. As such, the ideal gas behavior occurs best in high temperatures and low pressures. (Answer to your question: C) This is because the attraction between molecules are assumed to be negligible in ideal gases, no interactions and transfer of energy between the molecules occur, and as temperature decreases and pressure increases, the more the gas will act like an real gas.
Answer:
7.5 g of hydrogen gas reacts with 50.0 g oxygen gas to form 57.5 g of water.
Explanation:
Here we have the check if the mass of the reactants is equal to the mass of the products.
Reactants

Products

The data is consistent with the law of conservation of matter.
Reactants

Products

The data is not consistent with the law of conservation of matter.
Reactant

Products

The data is not consistent with the law of conservation of matter.
Only the first data is consistent with the law of conservation of matter.