Explanation: Electrostatic force is directly related to the charge of each object. So if the charge of one object is doubled, then the force will become two times greater.
Assuming that the box is moving when it is being pulled, Work is done on the box.
So work is the Force times the distance
W=Fd
But what is work actually ? When something moves due to force over some change in distance, it have energy.
But where does this energy come from ? Does it magically appear ? The energy comes from the applied force onto the box.
So the energy have been transferred. And it’s like that throughout the universe
Now to save time, I’ll just tell you the answer: kinetic energy
:)
Answer:
270 mi/h
Explanation:
Given that,
To the south,
v₁ = 300 mi/h, t₁ = 2 h
We can find distance, d₁

To the north,
v₂ = 250 mi/h, d₂ = 750 miles
We can find time, t₂

Now,
Average speed = total distance/total time

Hence, the average speed for the trip is 270 mi/h.
Answer:
because they are the rocks that line the surface of our planet
Explanation:
We see sedimentary rocks more than other rock types because they are the rocks that line the surface of our planet.
Sedimentary rocks typically form the earth cover due to the way they are formed.
- These rocks are produced by the weathering, transportation and deposition of sediments within a basin.
- In this basin, the sediment is lithified and converted to sedimentary rocks.
- These processes are driven by the external heat engine
- Therefore, it is confined to the surface.
- Igneous and metamorphic rock's processes are confined to the subsurface.
Actually what the problem meant about the westward
component of the ball’s displacement is the horizontal component of the
displacement. To help us better understand the problem, I attached a figure of
the situation.
We can see from the figure that to solve for the value of
the horizontal component, we have to make use of the sin function. That is:
sin θ = side opposite to the angle / hypotenuse of the
triangle
sin 42 = x / 40 m
x = (40 m) sin 42
x = 26.77 m
Therefore the ball has a westward
displacement of about 26.77 m