Here, We know, Density = Mass / Volume
Here, mass = 44 g
volume = 40.5 ml = 40.5 cm³
Substitute their values,
d = 44 / 40.5
d = 1.086 g/cm³
In short, Your Answer would be 1.086 g/cm³
Hope this helps!
Answer:
The location of the shear center o is 0.033 or 33 m
Explanation:
Solution
Recall that,
The moment of inertia of the section is = I = 0.05 * 0.4 ^3 /12 + 0.005 * 0.2 ^3/12
= 30 * 10 ^ ⁻⁶ m⁴
Now,
The first moment of inertia is
Q =ῩA = [ (0.1 -x) + x/2] (0.005 * x)
= 0.5x * 10 ^⁻³ - 2.5 x * 10⁻³ x²
Thus,
The shear flow is,
q = VQ/I
so,
P = (0.5x * 10 ^⁻³ - 2.5 x * 10⁻³ x²)/ 30 * 10 ^⁻⁶
P = (16.67 x - 83. 33 x²)
The shear force resisted by the shorter web becomes
Vw,₂ = 2∫ = ₀.₁ and ₀ = P (16.67 x - 83. 33 x²) dx = 0.11x
Then,
We take the moment at a point A
∑Mₐ = 0
- ( p * e)- (Vw₂ * 0.3 ) = 0
e = 0.11 p * 0.3/p
which gives us 0.033 m
= 33 m
Therefore the location of the shear center o is 0.033 or 33 m
Note: Kindly find an attached diagram to the question given above as part of the explanation solved with it.
Answer:
The value is 
Explanation:
From the question we are told that
The width of the slit is 
The distance of the screen from the slit is D = 1.25 m
The width of the central maximum is 
Generally the width of the central maximum is mathematically represented as

Here m is the order of the fringe and given that we are considering the central maximum, the order will be m = 1 because the with of the central maximum separate's the and first maxima
So

=> 
=> 
=> 
An electric current can have no current when the switch is OPEN