Answer:
a. 750Hz, b. 4.0ppm, c. 600Hz
Explanation:
The Downfield Shift (Hz) is given by the formula
Downfield Shift (Hz) = Chemical Shift (ppm) x Spectrometer Frequency (Hz)
Using the above formula we can solve all three parts easily
a. fspec = 300 MHz, Chem. Shift = 2.5ppm, 1MHz = 10⁶ Hz, 1ppm (parts per million) = 10⁻⁶
Downfield Shift (Hz) = 2.5ppm x 300MHz x (1Hz/10⁶MHz) x (10⁻⁶/1ppm)
Downfield Shift = 750 Hz
The signal is at 750Hz Downfield from TMS
b. Downfield Shift = 1200 Hz, Chemical Shift = ?
Chemical Shift = Downfield shift/Spectrometer Frequency
Chemical Shift = (1200Hz/300MHz) x (1ppm/10⁻⁶) = 4.0 ppm
The signal comes at 4.0 ppm
c. Separation of 2ppm, Downfield Shift = ?
Downfield Shift (Hz) = 2(ppm) x 300 (MHz) x (1Hz/10⁶MHz) x (10⁻⁶/1ppm) = 600 Hz
The two peaks are separated by 600Hz
Answer:
b
Explanation:
A pure substance has a constant composition and cannot be separated into simpler substances by physical means. There are two types of pure substances: elements and compounds.
Okay, pls give brainliest because I answered the fastest and how are you?
Answer:
The vapor pressure in solution is 0,0051 atm
Explanation:
This is the formula for vapor pressure lowering, the colligative property.
P vapor = Pressure sv pure . Xsv
Where Xsv is data.
Xsv means Molar fraction (moles solvent/total n° moles)
Vapor pressure of water, pure is 17.5 mmHg
P vapor = 0,0313 atm . 0163
P vapor in solution = 0,0051 atm
Molar fraction does not have units
A solution will have less vapor pressure than that observed in the pure solvent.