Explanation:
Equation of the reaction:
Br2(l) + Cl2(g) --> 2BrCl(g)
The enthalpy change for this reaction will be equal to twice the standard enthalpy change of formation for bromine monochloride, BrCl.
The standard enthalpy change of formation for a compound,
ΔH°f, is the change in enthalpy when one mole of that compound is formed from its constituent elements in their standard state at a pressure of 1 atm.
This means that the standard enthalpy change of formation will correspond to the change in enthalpy associated with this reaction
1/2Br2(g) + 1/2Cl2(g) → BrCl(g)
Here, ΔH°rxn = ΔH°f
This means that the enthalpy change for this reaction will be twice the value of ΔH°f = 2 moles BrCl
Using Hess' law,
ΔH°f = total energy of reactant - total energy of product
= (1/2 * (+112) + 1/2 * (+121)) - 14.7
= 101.8 kJ/mol
ΔH°rxn = 101.8 kJ/mol.
Answer:
Everything around you can be broken down into smaller particles called atoms. The particles of one substance are all the same and different substances are made up of different particles.
Explanation:
Answer:
1.
work out the mean mode median and range
Explanation:
Answer:
a) 
b) 
c) 
Explanation:
Hello,
a) In this case, the given height in cm is:

And the radius in cm is:

Thus, the volume in cubic centimeters which is also equal in mL (1cm³=mL) is:

b) In this case, the given height in mm is:

And the radius in mm is:

Thus, the volume in cubic millimeters is:

c) Finally, since 1000 mL equal 1 L, the required density in g/L turns out:

Best regards.
It protects the nucleus and