Answer:
1.4 mols
4th answer
Explanation:
22. 5 g of O2 in moles = (22.5/32) mols = 0.703 mol
The stoichiometry between O2 and H2O =1: 2
Therefore H2O produced = 2 * 0.703 mols=1.406 mols
Total density of filled ball with nitrogen gas: 
The relationship between mass and volume can be easily determined using density; for example, the mass of a body is equal to its volume multiplied by the density (M = Vd), whereas the volume is equal to the mass divided by the density (V = M/d). The ball filled with nitrogen will not float in the air because total density of filled ball is greater than the density of an air. Density of the evacuated ball D = 0.214 g/L
Density of nitrogen gas = 
Mass of the nitrogen gas : 
Learn more about Mass and Density here:
brainly.com/question/10821730
#SPJ4
Answer:
0.054 mol O
Explanation:
<em>This is the chemical formula for acetic acid (the chemical that gives the sharp taste to vinegar): CH₃CO₂H. An analytical chemist has determined by measurements that there are 0.054 moles of carbon in a sample of acetic acid. How many moles of oxygen are in the sample?</em>
<em />
Step 1: Given data
- Chemical formula of acetic acid: CH₃CO₂H
- Moles of carbon in the sample: 0.054 moles
Step 2: Establish the appropriate molar ratio
According to the chemical formula, the molar ratio of C to O is 2:2.
Step 3: Calculate the moles of oxygen in the sample
We will use the molar ratio to determine the moles of oxygen accompanying 0.054 moles of carbon.
0.054 mol C × (2 mol O/2 mol C) = 0.054 mol O
Answer:
=> 2.8554 g/mL
Explanation:
To determine the formula to use in solving such a problem, you have to consider what you have been given.
We have;
mass (m) = 16.59 g
Volume (v) = 5.81 mL
From our question, we are to determine the density (rho) of the rock.
The formula:

Substitute the values into the formula:

= 2.8554 g/mL
Therefore, the density (rho) of the rock is 2.8554 g/mL.
Answer:
Endergonic reaction or nonspontaneous reaction.
Explanation:
Gibbs free energy is a state function that determines the spontaneity or feasibility of the given reversible chemical reaction, at fixed pressure and temperature. It is given by the equation:
ΔG = ΔH - TΔS
Here, ΔG - change in Gibbs free energy
ΔH- The change in enthalpy of reaction
ΔS - The change in entropy
T- Temperature
When the <u>change in the Gibbs free energy for a given reaction is positive</u> (ΔG > 0), then that chemical reaction is known as an endergonic reaction or nonspontaneous reaction.