Answer:
Option C. the sharing of electrons between atoms
Explanation:
Covalent bond is a type of bond in which the reacting element share their valence electrons in order to attain the noble gas configuration.
Answer: Option (c) is the correct answer.
Explanation:
A hydrogen bond is defined as a weak bond that is formed between an electropositive atom (generally hydrogen atom) and an electronegative atom like oxygen, nitrogen and fluorine.
An ionic bond is defined as a bond formed between a metal and a non-metal and in this bond transfer of electron takes place from metal to non-metal. And, due to the presence of opposite charges on the combining atoms there exists a strong force of attraction.
Vander waal forces are defined as the weak electric forces which tend to attract neutral molecules towards each other in gases, liquefied and solidified gases.
Vander waal forces are very weak forces.
Thus, we can conclude that Van der walas interactions are weak interactions would require the least amount of energy to disrupt.
Mass atomic of Ne=20.18 u
Therefore:
molar mass=20.18 g/1 mol
1 mole=6.022*10²³ particles (atoms or molecules)
Then: 6.022*10²³ atoms are contained in 20.18g
Now, We can solve this problem by the three rule.
6.022*10²³ atoms-------------------20.18 g
x------------------------------------------32 g
x=(6.022*10²³ atoms * 32 g)/20.18 g=9.55*10²³ atoms.
Answer: 9.55*10²³ Ne atoms are contained in 32 g of the element.
Answer:
11.31 g.
Explanation:
Molarity is defined as the no. of moles of a solute per 1.0 L of the solution.
M = (no. of moles of solute)/(V of the solution (L)).
<em>∴ M = (mass/molar mass)of NaCl/(V of the solution (L)).</em>
<em></em>
<em>∴ mass of NaCl remained after evaporation of water = (M)(V of the solution (L))(molar mass)</em> = (0.45 M)(0.43 L)(58.44 g/mol) = <em>11.31 g.</em>
Explanation:
The given data is as follows.
Pressure (P) = 760 torr = 1 atm
Volume (V) =
= 0.720 L
Temperature (T) =
= (25 + 273) K = 298 K
Using ideal gas equation, we will calculate the number of moles as follows.
PV = nRT
Total atoms present (n) =
=
= 0.0294 mol
Let us assume that there are x mol of Ar and y mol of Xe.
Hence, total number of moles will be as follows.
x + y = 0.0294
Also, 40x + 131y = 2.966
x = 0.0097 mol
y = (0.0294 - 0.0097)
= 0.0197 mol
Therefore, mole fraction will be calculated as follows.
Mol fraction of Xe =
= 
= 0.67
Therefore, the mole fraction of Xe is 0.67.