Answer:
57 N
Explanation:
Were are told that the force
of gravity on Tomas is 57 N.
And it acts at an inclined angle of 65°
Thus;
The vertical component of the velocity is; F_y = 57 sin 65
While the horizontal component is;
F_x = 57 cos 65
Thus;
F_y = 51.66 N
F_x = 24.09 N
The net force will be;
F_net = √((F_y)² + (F_x)²)
F_net = √(51.66² + 24.09²)
F_net = √3249.0837
F_net = 57 N
Answer:
W = 1418.9 J = 1.418 KJ
Explanation:
In order to find the work done by the pull force applied by Karla, we need to can use the formula of work done. This formula tells us that work done on a body is the product of the distance covered by the object with the component of force applied in the direction of that displacement:
W = F.d
W = Fd Cosθ
where,
W = Work Done = ?
F = Force = 151 N
d = distance covered = 10 m
θ = Angle with horizontal = 20°
Therefore,
W = (151 N)(10 m) Cos 20°
<u>W = 1418.9 J = 1.418 KJ</u>
A coil of insulated wire around an iron core
Answer:
The time interval of acceleration for the bus is 2.20 seconds
Explanation:
Acceleration is the rate of change of velocity
→ 
where a is the acceleration, v is the final velocity, u is the initial velocity
and t is the time
The given is:
The uniform acceleration = -4.1 m/s²
The bus slows from 9 m/s to 0 m/s
We need to find the time interval of acceleration for the bus
Lets use the rule above
→ a = -4.1 m/s² , v = 0 m/s , u = 9 m/s
→ 
Multiply both sides by t
→ -4.1 t = -9
Divide both sides by -4.1
∴ t = 2.20 seconds
<em>The time interval of acceleration for the bus is 2.20 seconds</em>