Explanation:
The given data is as follows.
Fluid is water so, density 
Weight flow rate = 500 lbf/s = 2224.11 N/sec
Cross-sectional area (A) = 
= 0.05184 
Hence, weight flow rate will be given as follows.
w = 
2224.11 N/sec = 
V =
m/s
= 4.373 m/s
Thus, we can conclude that average velocity in the given case is 4.373 m/s.
¡Hola! Un campo de la psicología son las ramas principales de la psicología. (Por ejemplo, psicología del comportamiento, psicología cognitiva, psicología del desarrollo, psicología de la personalidad). ¡Espero que esto le ayude! Buena suerte y que tengas un gran día. Por cierto, AMO la psicología, ¡así que siéntete libre de hacerme más preguntas al respecto! Además, intente utilizar la versión en español de Brainly para obtener mejores respuestas en su idioma: https://brainly.lat/
❤️✨
Answer:
Low pressure systems typically arrive with storms and clouds. Air motion is usually upwards, as heated are is less dense and more buoyant than cooler air. A high pressure system is typically cooler than its counter-part, and skies are usually clear. Low pressure systems carry more water vapor due to rising hot air cooling and condensing.
Answer:
The statement "If a positively charged rod is brought close to a positively charged object, the two objects will repel
" applies to electric charges.
Explanation:
There are only two types of electric charges. Both having own magnitude but different charge.
1. Positive charge
2. Negative charge
Like charges repel each other and opposite charges always attract each other.
When a positively charged rod is brought close to a positively charged object, the rod and the object will repel.
Answer:
a = g = 9.81[m/s^2]
Explanation:
This problem can be solve using the second law of Newton.
We know that the forces acting over the skydiver are only his weight, and it is equal to the product of the mass by the acceleration.
m*g = m*a
where:
g = gravity = 9.81[m/s^2]
a = acceleration [m/s^2]
Note: If the skydiver will be under air resistance forces his acceleration will be different.