Answer:
i have no clue i just need brailnly points
Explanation:
Answer:
If a Gaussian surface is completely inside an electrostatic conductor, the electric field must always be zero at all points on that surface.
Explanation:
Option A is incorrect because, given this case, it is easier to calculate the field.
Option B is incorrect because, in a situation where the surface is placed inside a uniform field, option B is violated
Option C is also incorrect because it is possible to be a field from outside charges, but there will be an absence of net flux through the surface from these.
Hence, option D is the correct answer. "If a Gaussian surface is completely inside an electrostatic conductor, the electric field must always be zero at all points on that surface."
Answer:
Same magnitude of the 10 nc charge cause the electric field is external.
Explanation:
To do a better explanation, let's go and suppose we have an electric field of, 1300 N/C with a 10 nC charge.
As the system we are talking about is really big, and the charge is small, we can assume always if the charge is sitting right in the same point where the electric field is, then, the electric field would not suffer any kind of alteration in it's value. Therefore, no matter what value of the charge is sitting here, the electric field is independent of the charge, so it would not feel any alteration. However, the force that the charge is feeling would be stronger than in the first case.
F = qE
If charge is doubled, then the force would be bigger in the second case than in the first case, but electric field remain the same value.
Answer:
can you please translate to english?
Explanation:
Answer:
The answer to the question is
The ladybug begins to slide
Explanation:
To solve the question we assume that the frictional force of the ladybug and the gentleman bug are the same
Where the frictional force equals
= μ×N = m×g×μ
and the centripetal force is given by m·ω²·r
If we denote the properties of the ladybug as 1 and that of the gentleman bug as 2, we have
m₁×g×μ = m₁·ω²·r₁ ⇒ g×μ = ω²·r₁
and for the gentleman bug we have
m₂×g×μ = m₂·ω²·r₂ ⇒ g×μ = ω²·r₂
But r₁ = 2×r₂
Therefore substituting the values of r₁ =2×r₂ we have
g×μ = ω²·r₁ = g×μ = ω²·2·r₂
Therefore ω²·r₂ = 0.5×g×μ for the ladybug. That is the ladybug has to overcome half the frictional force experienced by the gentleman bug before it start to slide
The ladybug begins to slide