Answer:
Option D is correct: 170 µW/m²
Explanation:
Given that,
Frequency f = 800kHz
Distance d = 2.7km = 2700m
Electric field Eo = 0.36V/m
Intensity of radio signal
The intensity of radial signal is given as
I = c•εo•Eo²/2
Where c is speed of light
c = 3×10^8m/s
εo = 8.85 × 10^-12 C²/Nm²
I = 3×10^8 × 8.85×10^-12 × 0.36²/2
I = 1.72 × 10^-4W/m²
I = 172 × 10^-6 W/m²
I = 172 µW/m²
Then, the intensity of the radio wave at that point is approximately 170 µW/m²
Answer:
Furthermore, the AEC said that the Joint Committee has made its position clear that it would no longer authorize any such subsidies. Yet, Mr. Chairman, we find.
Answer:
A crowbar is a level.
Explanation:
A crowbar is a first class lever. One where the fulcrum is between the effort and the load; The effort is applied to the end of a crowbar for example pulling up a nail the fulcrum is where the crow bar bends upwards touching the board, the load is the nail on the opposite end of the bar.
Answer:
A = [m/s]
B = [m/s²]
Explanation:
Assuming that V has SI units of m/s, then A and BT must also have units of m/s.
A = [m/s]
BT = [m/s]
Since T has SI units of s:
B [s] = [m/s]
B = [m/s²]