<span>1.0x10^3 Joules
The kinetic energy a body has is expressed as the equation
E = 0.5 M V^2
where
E = Energy
M = Mass
V = Velocity
Since the shot was at rest, the initial energy is 0. Let's calculate the energy that the shot has while in motion
E = 0.5 * 7.2 kg * (17 m/s)^2
E = 3.6 kg * 289 m^2/s^2
E = 1040.4 kg*m^2/s^2
E = 1040.4 J
So the work performed on the shot was 1040.4 Joules. Rounding the result to 2 significant figures gives 1.0x10^3 Joules</span>
A. nucleus
hope this helps if so please mark me brianliest
We know, F = 1/4πε * q₁q₂ / r²
Here, q₁ = 5 * 10⁻⁶ C
q₂ = 2 * 10⁻⁶ C
r = 3 * 10⁻² m west
Substitute their values,
F = (9 * 10⁹) (5 * 10⁻⁶) (2 * 10⁻⁶) / (3 * 10⁻²)²
F = 100 N [ East of positive charge ]
Hope this helps!
Answer:=14,160 kJ
Explanation: Let m1 and m2 be the initial and final amounts of mass within the tank, respectively. The steam properties are listed in the table below
Specific Internal SpecificTemp Pressure Volume Energy Enthalpy Quality Phase
C MPa m^3/kg kJ/kg kJ/kg
1 260 4.689 0.02993 2158 2298 0.7 Liquid Vapor Mixture
2 260 4.689 0.0422 2599 2797 1 Saturated Vapor
The mass initially contained in the tank is m1 = V/v1
m1 =0.85 m^3 /0.02993 m^3 /kg
= 28.4 kg
The mass finally contained in the tank is
m2 =V2/v
= 0.85 m^3 /0.0422 m^3 /kg
= 20.14 kg
The heat transfer is then
Qcv = m2u2 − m1u1 − he(m2 − m1)
Qcv = (20.14)(2599) − (28.4)(2158) − (2797)(20.14 − 28.4) = 14,160 kJ