Answer:
Gravity ( gravity , weight, traction force) is the force acting on any body on or near the surface of the celestial body directed at its center. Gravity, that is, the force with which the earth , moon , planets, and other celestial bodies or their systems act on other bodies, is theoretically exercised at any distance, but is practically examined on the surface of these bodies as well as at short distances.
Answer:
v = 10.84 m/s
Explanation:
using the equation of motion:
v^2 = (v0)^2 + 2×a(r - r0)
<em>due to the hammer starting from rest, vo = 0 m/s and a = g , g is the gravitational acceleration.</em>
v^2 = 2×g(r - r0)
v = \sqrt{2×(-9.8)×(4 - 10)}
= 10.84 m/s
therefore, the velocity at r = 4 meters is 10.84 m/s
Answer:
B, the number of protons.
Explanation:
It is the number of protons found in the nucleus of the atom.
The unit used to measure wavelength is a Nano-meter
Answer:
Explanation:
Given the height reached by a balloon after t sec modeled by the equation
h=1/2t²+1/2t
a) To calculate the height of the balloon after 40 secs we will substitute t = 40 into the modeled equation and calculate the value of t
If h(t)=1/2t²+1/2t
h(40) = 1/2(40)²+1/2 (40)
h(40) = 1600/2 + 40/2
h(40) = 800 + 20
h(40) = 820 feet
The height of the balloon after 40 secs is 820 feet
b) Velocity is the change of displacement of a body with respect to time.
v = dh/dt
v(t) = 2(1/2)t²⁻¹ + 1/2
v(t) = t + 1/2
when v = 0sec
v(0) = 0 + 1/2
v(0) = 1/2 ft/sec
at v = 30secs
v(30) = 30 + 1/2
v(30) = 30 1/2 ft/sec
average velocity = v(30) - v(0)
average velocity = 30 1/2 - 1/2
average velocity of the balloon between t = 0 and t = 30 = 30 ft/sec
c) Velocity is the change of displacement of a body with respect to time.
v = dh/dt
v(t) = 2(1/2)t²⁻¹ + 1/2
v(t) = t + 1/2
The velocity of the balloon after 30secs will be;
v(30) = 30+1/2
v(30) = 30.5ft/sec
The velocity of the balloon after 30 secs is 30.5 feet/sec