Answer:
65m
Explanation:
Twelve waves pass a dock in 3.60 If the waves are traveling at 19.5 m/s , what is the wavelength of the waves?
Velocity of a wave is expressed as;
V = frequency × wavelength
Given
Velocity = 19.5m/s
Frequency is the number of oscillations completed in 1sec, hence
Frequency= 3.6/12
Frequency = 0.3
Wavelength = vel/freq
Wavelength = 19.5/0.3
Wavelength = 65m
We know that tangential acceleration is related with radius and angular acceleration according the following equation:
at = r * aa
where at is tangential acceleration (in m/s2), r is radius (in m) aa is angular acceleration (in rad/s2)
So the radius is r = d/2 = 1.2/2 = 0.6 m
Then at = 0.6 * 5 = 3 m/s2
Tangential acceleration of a point on the flywheel rim is 3 m/s2
Answer:
A) 37 m
Explanation:
The car is moving of uniformly accelerated motion, so the distance it covers can be calculated by using the following SUVAT equation:
(1)
where
v = 0 m/s is the final velocity of the car
u = 24 m/s is the initial velocity
a is the acceleration
d is the length of the skid
We need to find the acceleration first. We know that the force responsible for the (de)celeration is the force of friction, so:
where
m = 1000 kg is the mass of the car
is the coefficient of friction
a is the deceleration of the car
g = 9.8 m/s^2 is the acceleration due to gravity
The negative sign is due to the fact that the force of friction is against the motion of the car, so the sign of the acceleration will be negative because the car is slowing down. From this equation, we find:
And we can substitute it into eq.(1) to find d:
Answer:
The answer is "In this information, Enzo will be confident that if any fertilizer is required only for plants".
Explanation:
The Beans plants were members of the group of legumes. Legume flowering plant under which the roots form nodules. These nodules require a specific bacterium called bacteria, which fix nitrogen. Its bacterium transforms nitrogen from the atmosphere into the soil's nitrate. Consequently, for some of its growth, beans do not require fertilizer.
Answer:
4.80 seconds
Explanation:
The velocity of sound is obtained from;
V= 2d/t
Where;
V= velocity of sound = 329.2 ms-1
d= distance from the wall = 790.5 m
t= time = the unknown
t= 2d/V
t= 2 × 790.5/ 329.2
t= 4.80 seconds