The distance between the two charges is 
Explanation:
The electrostatic force between two charged objects is given by Coulomb's law:

where:
is the Coulomb's constant
are the charges of the two objects
r is the separation between the two charges
In this problem, we are given the following:



Therefore, we can rearrange the equation to solve for r, the distance between the two charges:

Learn more about electrostatic force:
brainly.com/question/8960054
brainly.com/question/4273177
#LearnwithBrainly
Answer:
a)<em> 2000 W/m² </em><em>; </em>b) 636.94 W/m<em>².sr ; </em><em>c) </em>0.5
Explanation:
a)
The formula for calculation of total emissive power is:
Total emissive power = E =
E'<em>λdλ</em>
<em> </em>=
(0)d<em>λ + </em>
(100)d<em>λ + </em>
(200)d<em>λ + </em>
(100)d<em>λ </em>
(0)d<em>λ</em>
<em>where a = 5; b = 10; c = 15; d = 20; e = 25</em>
<em> = 0 +100(10-5) + 200(15-10) +100(20-15) + 0</em>
<em> = 2000 W/m²</em>
b)
The formula for total intensity of radiation is:
I
= E/π = 200/3.14 = 636.94 W/m<em>².sr </em>
<em>c)</em>
Fo submissive power leaving the surface in range π/4 ≤θ≤π/2
[E(π/4 ≤θ≤π/2)]/E = 

Icosθsinθ dθdΦdλ
where f = infinity, g=2π, h=π/4, i=π/2
By simplifying, we get
= (-1/2)[cos(2π/2)-cos(2π/2)]
= -0.5(-1-0)
=0.5
Answer:
Yes
Explanation:
Yes because Electromagnetic waves differ from mechanical waves in that they do not require a medium to propagate. This means that electromagnetic waves can travel not only through air and solid materials, but also through the vacuum of space.
Answer:

Explanation:
As we know by the formula of elasticity that

now we have


Area = 15.2 mm x 19.1 mm

now we also know that force is given as

here we have
stress = Force / Area


now from above formula we have


