Answer:
The x-component of the electric field at the origin = -11.74 N/C.
The y-component of the electric field at the origin = 97.41 N/C.
Explanation:
<u>Given:</u>
- Charge on first charged particle,

- Charge on the second charged particle,

- Position of the first charge =

- Position of the second charge =

The electric field at a point due to a charge
at a point
distance away is given by

where,
= Coulomb's constant, having value 
= position vector of the point where the electric field is to be found with respect to the position of the charge
.
= unit vector along
.
The electric field at the origin due to first charge is given by

is the position vector of the origin with respect to the position of the first charge.
Assuming,
are the units vectors along x and y axes respectively.

Using these values,

The electric field at the origin due to the second charge is given by

is the position vector of the origin with respect to the position of the second charge.

Using these values,

The net electric field at the origin due to both the charges is given by

Thus,
x-component of the electric field at the origin = -11.74 N/C.
y-component of the electric field at the origin = 97.41 N/C.
Explanation:
Given that,
Distance, s = 47 m
Time taken, t = 8.6 s
Final speed of the truck, v = 2.3 m/s
Let u is the initial speed of the truck and a is its acceleration such that :
.............(1)
Now, the second equation of motion is :

Put the value of a in above equation as :




u = 8.63 m/s
So, the original speed of the truck is 8.63 m/s. Hence, this is the required solution.
Answer:
The tangential speed of the tack is 6.988 meters per second.
Explanation:
The tangential speed experimented by the tack (
), measured in meters per second, is equal to the product of the angular speed of the wheel (
), measured in radians per second, and the distance of the tack respect to the rotation axis (
), measured in meters, length that coincides with the radius of the tire. First, we convert the angular speed of the wheel from revolutions per second to radians per second:


Then, the tangential speed of the tack is: (
,
)


The tangential speed of the tack is 6.988 meters per second.
In my opinion, yes the bible tell us that "For God so loved<span> the world that he gave</span><span> his one and only Son,</span><span> that whoever believes</span><span> in him shall not perish but have eternal life"
So my answer is yes</span>