1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
STatiana [176]
3 years ago
10

The smallest particle in the universe? A grain of salt is small, but you can always make it smaller. Imagine cutting that grain

of salt into two pieces. Now cut it again and again. Soon, you can't see the smaller pieces with your eyes, but the salt is still there. You finally cut the salt down to the very tiniest piece of salt there is. But even that tiny piece contains smaller particles. Those tiny particles are atoms. Atoms make up everything in the visible universe from galaxies to even yourself. Atoms are so incredibly small that you could line up 50 million in a row and the line would only be about 1 centimeter (less than half an inch) long. Still, scientists have found things that are smaller than atoms. And they are looking for more. If they find the smallest things in the universe, they'll better understand how the universe actually works. But it took some time before people discovered the world of the truly small. The Universe Gets Smaller… Grains of sand or dust were once the smallest things actually seen on Earth. By the 1600s, several inventions opened up brand new worlds to curious minds. These included lenses that could make things look clearer and bigger. Another early invention was the microscope. Some people used the microscope to observe and write about the tiniest things they could see. In the 1670s, a Dutch lens maker named Antonie van Leeuwenhoek built himself a microscope. It magnified things more than 200 times. Van Leeuwenhoek discovered a world of tiny living things that he called tiny animals. Van Leeuwenhoek figured they were about 1/38th the size of a grain of sand. Today we know that what he saw were bacteria, the smallest living things on Earth. But atoms are much, much smaller. You can't see atoms with an ordinary microscope. …And Smaller The idea that tiny, unbreakable particles make up everything that exists is more than 2000 years old. The Greek thinker Democritus called these particles "atomos." This is the Greek word for "uncuttable." Scientists didn't return to the idea of atoms until the 1800s. At first, scientists thought atoms were tiny balls with some electrical charges inside. They also thought atoms were the smallest particles that existed. But scientists soon began to wonder if atoms might be made of smaller things. In 1897, British scientist J. J. Thomson proved that they were. He ran experiments and discovered the electron. This tiny particle has a negative electrical charge and whizzes around inside the atom. A graphic showing the basic atomic structure of three elements, hydrogen, helium and oxygen. Protons, neutrons and electrons are shown.Zoom-in Different elements have different numbers of protons, neutrons, and electrons. The Smallest Things—So Far Scientists were soon discovering more inside the atom. Hiding in the atom's center is the tiny nucleus. (If an atom were the size of a racetrack, the nucleus would be about the size of a pea in the middle.) The nucleus contains two types of particles: protons and neutrons. Protons have a positive electrical charge while neutrons have no charge. They contain even tinier particles called quarks that are so unimaginably small that they have no internal structure. Quarks and electrons are the smallest particles found so far. Scientists call the smallest things they've found fundamental particles. Fundamental particles do not contain any smaller particles. Scientists use huge machines called particle accelerators to learn more about particles. These machines speed up particles so they can smash into each other. Then the scientists track the paths the particles leave when they hit. Scientists use accelerators to discover new particles. Many scientists wonder why there are so many particles at all. Shouldn't there be just one "smallest thing" instead of many? The search goes on for the particle that is the one true building block of everything in the universe
Describe what you think the author’s purpose was for writing this text and whether they were successful in this purpose. Support your response with specific details from the text
Physics
1 answer:
Gekata [30.6K]3 years ago
7 0

Answer:

Quarks

Explanation:

Quarks, the smallest particles in the universe, are far smaller and operate at much higher energy levels than the protons and neutrons in which they are found.

You might be interested in
Light propagate faster through medium “a” than medium “b”
dangina [55]

1) Medium "b" has more optical density

2) Light must hit the interface between the two mediums perpendicularly

Explanation:

1)

Refraction occurs when light propagates from a medium into a second medium.

The optical density of a medium is given by its index of refraction, which is defined as:

n=\frac{c}{v}

where

c is the speed of light in a vacuum

v is the speed of light in a medium

Higher index of refraction means higher optical density, and light propagater slower into a medium with higher optical density.

In this problem, light propagates faster through medium "a" than medium "b": this means that medium "a" has lower refractive index of medium "b", and so "b" has more optical density.

2)

We can answer this part by referring to Snell's law, which gives the relationship between the direction of the incident ray and of the refracted ray when light passes through the interface between two media:

n_1 sin \theta_1 = n_2 sin \theta_2

where

n_1, n_2 are the index of refraction of the two mediums

\theta_1, \theta_2 are the angle of incidence and of refraction (the angle that light makes with the normal to the surface in medium 1 and medium 2)

Here we want the direction of propagation of the light ray not to change: this means that it must be

sin \theta_1 = sin \theta_2 (1)

However, here we have two mediums "a" and "b" with different index of refraction, so

n_1\neq n_2

Therefore the only angle that can satisfy eq.(1) is

\theta_1 = \theta_2 = 0

So, the light must hit the surface perpendicular to the interface between the two mediums.

Learn more about refraction:

brainly.com/question/3183125

brainly.com/question/12370040

#LearnwithBrainly

3 0
3 years ago
What is solar energy I need lots of detail
Whitepunk [10]
Solar energy is that energy remaining from the sun that we store in solar panels. This energy is produced because of its nucleus.
3 0
3 years ago
Read 2 more answers
Why x ray is called an electromagnetic wave<br>​
Dahasolnce [82]
Because they behave just like all the electromagnetic waves of the spectrum. Same equations, just shorter wavelengths and more energy.

Hope you get it :)
7 0
3 years ago
Justify why a rotten fruit is not truly wasted
ololo11 [35]
Rotten fruit can be consumed by decomposers.
6 0
3 years ago
What has research determined about the orbit of an electron around a nucleus?
sergeinik [125]
The one that research has determined about the orbit of an electron around nucleus is : Each sub-level electron type has a unique path where it will likely to be found
Here are the sub levels of an electron :
-sub level s, maximum number of 2 electrons
- sub level p, maximum number of 6 electrons
- sub level d, maximum number of 10 electrons
- sub level f, maximum number of 14 electrons
8 0
3 years ago
Read 2 more answers
Other questions:
  • What is the timeline for the law of conservation of energy
    5·1 answer
  • Bob and John are pulling in different directions. If Bob is pulling to the right with a force of 10N, and John is pulling to the
    12·1 answer
  • A 1500 kg car is approaching a hill that has a height of 12 m. As the car reaches the bottom of the hill it runs out of gas and
    8·1 answer
  • What color dose red cabbage juice turn when it is mixed with lemon juice
    6·1 answer
  • Carlotta makes a graphic organizer about the steps of the Sun’s hydrogen fusion process. A venn diagram of 3 intersecting circle
    14·1 answer
  • Chang wants to build a circuit that will light up the bulb from a flashlight. Which component could Chang leave out and still li
    12·2 answers
  • A person is in a car crash and is not wearing their seatbelt. They hit their
    6·1 answer
  • DO NOT ANSWER IF YOU DON'T KNOW
    8·1 answer
  • How tall is Mount Everest?
    7·2 answers
  • Wolfgang pauli hypothesized an exclusion principle. This principle says two electrons in an atom cannot have the same what?.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!