The solution would be like
this for this specific problem:
<span>5.5 g = g + v^2/r </span><span>
<span>4.5 g =
v^2/r </span>
<span>v^2 = 4.5
g * r </span>
<span>v = sqrt
( 4.5 *9.81m/s^2 * 350 m) </span>
v = 124
m/s</span>
So the pilot will black out for this dive at 124
m/s. I am hoping that these answers have satisfied your query and it
will be able to help you in your endeavors, and if you would like, feel free to
ask another question.
Answer:
Speeding up While Falling Down
Gravity is a force that pulls objects down toward the ground. When objects fall to the ground, gravity causes them to accelerate. Acceleration is a change in velocity, and velocity, in turn, is a measure of the speed and direction of motion.
mark me as brainliest
Explanation:
Answer:
28,800m/p second
Explanation:
Calculate the distance per second so, 400m/50 s= 8m/p second now knowing the speed/hour and knowing an hour has 3,600 seconds,multiply it by 8 then you will get 28,800m/p second, or 28.8km/h
Answer:
Iron
Explanation:
H = mc∅
Above equation can be used here to find the answer to the question. this equation gives us the relationship between the heat energy supplied to a material and the temperature difference that the material would go through according to its mass.
here H is the Heat energy supplied to the material. m is the mass of the material. c is the specific heat capacity of the material and ∅ is the temperature difference applied to the material. we are given that H= 337,500J , m = 50 kg and ∅ = 15 °C. so from the equation now we can calculate the value of c. after calculating c we can find the material because c is an unique value for a particular material. no two materials have the same c value.
c = 337500/(50*15)
c = 450 J/(kg°C) - Iron (google the heat capacity value to find the answer Iron)
The law of conservation of mass states that in a closed system, the mass of the system cannot change over time. We can remember the law of conservation of mass with this simple statement: The mass of the reactants must equal the mass of the products
There are equal number of atoms on both sides.