Answer:
2.25g of NaF are needed to prepare the buffer of pH = 3.2
Explanation:
The mixture of a weak acid (HF) with its conjugate base (NaF), produce a buffer. To find the pH of a buffer we must use H-H equation:
pH = pKa + log [A-] / [HA]
<em>Where pH is the pH of the buffer that you want = 3.2, pKa is the pKa of HF = 3.17, and [] could be taken as the moles of A-, the conjugate base (NaF) and the weak acid, HA, (HF). </em>
The moles of HF are:
500mL = 0.500L * (0.100mol/L) = 0.0500 moles HF
Replacing:
3.2 = 3.17 + log [A-] / [0.0500moles]
0.03 = log [A-] / [0.0500moles]
1.017152 = [A-] / [0.0500moles]
[A-] = 0.0500mol * 1.017152
[A-] = 0.0536 moles NaF
The mass could be obtained using the molar mass of NaF (41.99g/mol):
0.0536 moles NaF * (41.99g/mol) =
<h3>2.25g of NaF are needed to prepare the buffer of pH = 3.2</h3>
Malleability is the property due to which substances tend to hammered into thin sheets when pressure is applied. Malleability is observed in metal as the metal atoms are bound by metallic bonds. The layers of metal atoms can roll over each other without breaking the metal bond when pressure is applied. In the periodic table malleability decreases as the metallic nature decreases. Among the given metals Al is the most metallic element, followed by Zinc an Carbon is a non metal. Therefore, the order of increasing malleability will be C, Zn, Al
U literally put all yo information on their
Answer:
The minimum amount of energy needed the the cell to perform various cellular,biochemical and physiological activities is known is Gibbs free energy.
Explanation:
The change in gibbs free energy of is very much important to determine whether a given reaction is spontaneous,non spontaneous or equilibrium.
1 If gibbs free energy change of a reaction is negative then the reaction is spontaneous.
2 If the free energy change is 0 then the reaction is in equilibrium stage.
3 If free energy change is positive then the reaction is non spontaneous.