1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
julia-pushkina [17]
3 years ago
5

How do we weigh planets? Explain your thinking

Physics
1 answer:
aleksandrvk [35]3 years ago
4 0
The weight (or the mass) of a planet is determined by its gravitational effect on other bodies. Newton's Law of Gravitation states that every bit of matter in the universe attracts every other with a gravitational force that is proportional to its mass.
You might be interested in
Firecracker A is 300 m from you. Firecracker B is 600 m from you in the same direction. You see both explode at the same time. D
ss7ja [257]

Answer:

e see that the distances are different, the only way that the two beams of light approach simultaneously is that event 2 (farthest) occurs first than event 1

Explanation:

This is an ejercise in special relativity, where the speed of light is constant.

Let's carefully analyze the approach, we see the two events at the same time.

The closest event time is

       c = (x₁-300) / t

       t = (x₁-300) / c

The time for the other event is

       t = (x₂- 600) / c

since they tell us that we see the events simultaneously, we can equalize

        (x₁ -300) / c = (x₂ -600) / c

         x₁ = x₂ - 300

We see that the distances are different, the only way that the two beams of light approach simultaneously is that event 2 (farthest) occurs first than event 1

3 0
2 years ago
To test the quality of a tennis ball, you drop it onto the floor from a height of 4.00 m. It rebounds to a height of 2.00 m. If
arlik [135]

Answer:

Part a)

a = 1260.3 m/s^2

Part b)

Direction = upwards

Explanation:

When ball is dropped from height h = 4.0 m

then the speed of the ball just before it will strike the ground is given as

v_f^2 - v_i^2 = 2 a d

v_1^2 - 0^2 = 2(9.81)(4.0)

v_1 = 8.86 m/s

Now ball will rebound to height h = 2.00 m

so the velocity of ball just after it will rebound is given as

v_f^2 - v_i^2 = 2 a d

0 - v_2^2 = 2(-9.81)(2.00)

v_2 = 6.26 m/s

Part a)

Average acceleration is given as

a = \frac{v_f - v_i}{\Delta t}

a = \frac{6.26 - (-8.86)}{12.0 \times 10^{-3}}

a = 1260.35 m/s^2

Part B)

As we know that ball rebounds upwards after collision while before collision it is moving downwards

So the direction of the acceleration is vertically upwards

7 0
3 years ago
The speed of sound through air is approximately 340 m/sec. What is the wavelength of a sound wave with a frequency of 706 Hz? Ro
cestrela7 [59]

Answer:

Wavelength  = 0.48 m (Approx)

Explanation:

Given:

Speed of sound = 340 m/s

Frequency = 706 hz

Find:

Wavelength

Computation:

Wavelength  = Speed of sound / Frequency

Wavelength  = 340 / 706

Wavelength  = 0.48 m (Approx)

7 0
2 years ago
A rocket will move upward as long as which condition applies?
Dennis_Churaev [7]
The force of thrust is greater than the force if gravity !
Answer found on quizlet !
8 0
3 years ago
Physics B 2020 Unit 3 Test
weqwewe [10]

Answer:

1)

When a charge is in motion in a magnetic field, the charge experiences a force of magnitude

F=qvB sin \theta

where here:

For the proton in this problem:

q=1.602\cdot 10^{-19}C is the charge of the proton

v = 300 m/s is the speed of the proton

B = 19 T is the magnetic field

\theta=65^{\circ} is the angle between the directions of v and B

So the force is

F=(1.602\cdot 10^{-19})(300)(19)(sin 65^{\circ})=8.28\cdot 10^{-16} N

2)

The magnetic field produced by a bar magnet has field lines going from the North pole towards the South Pole.

The density of the field lines at any point tells how strong is the magnetic field at that point.

If we observe the field lines around a magnet, we observe that:

- The density of field lines is higher near the Poles

- The density of field lines is lower far from the Poles

Therefore, this means that the magnetic field of a magnet is stronger near the North and South Pole.

3)

The right hand rule gives the direction of the  force experienced by a charged particle moving in a magnetic field.

It can be applied as follows:

- Direction of index finger = direction of motion of the charge

- Direction of middle finger = direction of magnetic field

- Direction of thumb = direction of the force (for a negative charge, the direction must be reversed)

In this problem:

- Direction of motion = to the right (index finger)

- Direction of field = downward (middle finger)

- Direction of force = into the screen (thumb)

4)

The radius of a particle moving in a magnetic field is given by:

r=\frac{mv}{qB}

where here we have:

m=6.64\cdot 10^{-22} kg is the mass of the alpha particle

v=2155 m/s is the speed of the alpha particle

q=2\cdot 1.602\cdot 10^{-19}=3.204\cdot 10^{-19}C is the charge of the alpha particle

B = 12.2 T is the strength of the magnetic field

Substituting, we find:

r=\frac{(6.64\cdot 10^{-22})(2155)}{(3.204\cdot 10^{-19})(12.2)}=0.366 m

5)

The cyclotron frequency of a charged particle in circular motion in a magnetic field is:

f=\frac{qB}{2\pi m}

where here:

q=1.602\cdot 10^{-19}C is the charge of the electron

B = 0.0045 T is the strength of the magnetic field

m=9.31\cdot 10^{-31} kg is the mass of the electron

Substituting, we find:

f=\frac{(1.602\cdot 10^{-19})(0.0045)}{2\pi (9.31\cdot 10^{-31})}=1.23\cdot 10^8 Hz

6)

When a charged particle moves in a magnetic field, its path has a helical shape, because it is the composition of two motions:

1- A uniform motion in a certain direction

2- A circular motion in the direction perpendicular to the magnetic field

The second motion is due to the presence of the magnetic force. However, we know that the direction of the magnetic force depends on the sign of the charge: when the sign of the charge is changed, the direction of the force is reversed.

Therefore in this case, when the particle gains the opposite charge, the circular motion 2) changes sign, so the path will remains helical, but it reverses direction.

7)

The electromotive force induced in a conducting loop due to electromagnetic induction is given by Faraday-Newmann-Lenz:

\epsilon=-\frac{N\Delta \Phi}{\Delta t}

where

N is the number of turns in the loop

\Delta \Phi is the change in magnetic flux through the loop

\Delta t is the time elapsed

From the formula, we see that the emf is induced in the loop (and so, a current is also induced) only if \Delta \Phi \neq 0, which means only if there is a change in magnetic flux through the loop: this occurs if the magnetic field is changing, or if the area of the loop is changing, or if the angle between the loop and the field is changing.

8)

The flux is calculated as

\Phi = BA sin \theta

where

B = 5.5 T is the strength of the magnetic field

A is the area of the coil

\theta=18^{\circ} is the angle between the  direction of the field and the plane of the loop

Here the loop is rectangular with lenght 15 cm and width 8 cm, so the area is

A=(0.15 m)(0.08 m)=0.012 m^2

So the flux is

\Phi = (5.5)(0.012)(sin 18^{\circ})=0.021 Wb

See the last 7 answers in the attached document.

Download docx
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> docx </span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> pdf </span>
5 0
3 years ago
Other questions:
  • What is the uncertainty of the position of the bacterium? express your answer with the appropriate units?
    5·1 answer
  • We humans are on track to increase the amount of CO2 in the atmosphere so that the concentration in the future more than double
    12·1 answer
  • Electrical current in a wire
    7·1 answer
  • If a particle's position is given by x = 4 − 12 t + 3 t^ 2 (where t is in seconds and x is in meters), what is its velocity at s
    9·1 answer
  • A 0.2kg mass attached to the end of a spring is whirled in a vertical circle by a student. At some position, the mass experience
    12·1 answer
  • Determine the maximum height and range of a projectile fired at a height of 6 feet above the ground with an initial velocity of
    15·1 answer
  • A mass weighing 24 pounds, attached to the end of a spring, stretches it 4 inches. Initially, the mass is released from rest fro
    8·1 answer
  • Which of the following values has the greatest number of significant figures? Justify your answer?
    8·1 answer
  • Sedimentary layers that are deposited on an angle are called?
    10·1 answer
  • Do you know what NBA basketball player is this. And what is he doing to stay healthy.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!