Answer:
185.25 m/s
Explanation:
consider the motion of the combination of bullet and block after the collision
v₀ = initial speed just after the collision
v' = final speed = 0 m/s
μ = Coefficient of friction = 0.6
g = acceleration due to gravity = 9.8 m/s²
a = acceleration of the combination = - μ g = - (0.6) (9.8) = - 5.88 m/s²
d = stopping distance = 13 m
using the kinematics equation
v'² = v₀² + 2 a d
0² = v₀² + 2 (- 5.88) (13)
v₀ = 12.4 m/s
m = mass of the bullet = 9.9 g = 0.0099 kg
M = mass of the wood = 138 g = 0.138 kg
v = speed of bullet before collision
v₀ = speed of combination after the collision = 12.4 m/s
Using conservation of momentum
m v = (m + M) v₀
(0.0099) v = (0.0099 + 0.138) (12.4)
v = 185.25 m/s
Answer:
<em>The speed of the passengers is 5.24 m/s</em>
Explanation:
<u>Uniform Circular Motion
</u>
It occurs when an object in a circular path travels equal angles in equal times.
The angular speed can be calculated in two different ways:

Where:
v = tangential speed
r = radius of the circle described by the rotating object
Also:

Where:
f = frequency
Since the frequency is calculated when the number of revolutions n and the time t are known:

The Ferris wheel has a diameter of 100 m and makes n=1 rotation in t=60 seconds, thus the frequency is:

The angular speed is:

Now we calculate the tangential speed, solving this formula for v:


The radius is half the diameter, r=100/2=50 m:

Calculating:
v = 5.24 m/s
The speed of the passengers is 5.24 m/s
The key feature in the experimental study is C. <span>The treatment in the experiment must be applied to each of the individuals in the experimental group. This is because it is made sure that the variables and conditions in different correspondents are applied so that actual results may be concluded.</span>
Answer: Only Tech B is correct.
Explanation:
First, tech A is wrong.
The circuits that can be compared with links in a chain are the series circuit, and it can be related to the links in a chain because if one of the elements breaks, the current can not flow furthermore (because the elements in the circuit are connected in series) while in a parallel circuit if one of the branches breaks, the current still can flow by other branches.
Also in a parallel circuit, the sum of the currents of each path is equal to the current that comes from the source, so Tech B is correct, the total current is equal to the sum of the currents flowing in each branch of the circuit.