Answer:

General Formulas and Concepts:
<u>Calculus</u>
The derivative of a constant is equal to 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Product Rule: ![\frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Chain Rule: ![\frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>

<u>Step 2: Rewrite</u>

<u>Step 3: Differentiate</u>
- Product Rule [Basic Power/Chain Rule]:

- Simplify:

- Rewrite:

- Add:

Answer:
- y=(−112)x−52. Explanation: (−10,3) and (−8,−8) The slope of the line between A(x1,y1) and B(x2,y2) is: m=y2−y1x2−x1.
Step-by-step explanation:
Answer:
Where is the picture of the figure
Step-by-step explanation:
Answer:5
Step-by-step explanation:
Given:
The base of 40-foot ladder is 8 feet from the wall.
To find:
How high is the ladder on the wall (round to the nearest foot).
Solution:
Ladder makes a right angle triangle with wall and ground.
We have,
Length of ladder (hypotenuse)= 40 foot
Base = 8 foot
We need to find the perpendicular to get the height of the ladder on the wall.
Let h be the height of the ladder on the wall.
According to the Pythagoras theorem,





Taking square root on both sides.


Height cannot be negative. Round to the nearest foot.

Therefore, the height of the ladder on the wall is 39 foot.