Answer:
The blood will contain 750 grams of O2
Explanation:
Volume of blood in the human body = 15 deciliters
Mass of hemoglobin per deciliter of blood = 15 grams
Mass of hemoglobin in 50 deciliters of blood = 50×15 = 750 grams
Since all the hemoglobin molecules are saturated with O2, mass of O2 in the blood will be the same as mass of hemoglobin molecules in the blood.
Therefore, mass of O2 in the blood is 750 grams
Answer:
<u>Molarity</u><u> </u><u>is</u><u> </u><u>0</u><u>.</u><u>0</u><u>7</u><u>5</u><u> </u><u>M</u><u>.</u><u> </u>
Explanation:
Moles:

RFM of potassium sulphate :

substitute:

In volume of 5.00 l:

setup 1 : to the right
setup 2 : equilibrium
setup 3 : to the left
<h3>Further explanation</h3>
The reaction quotient (Q) : determine a reaction has reached equilibrium
For reaction :
aA+bB⇔cC+dD
![\tt Q=\dfrac{C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=%5Ctt%20Q%3D%5Cdfrac%7BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
Comparing Q with K( the equilibrium constant) :
K is the product of ions in an equilibrium saturated state
Q is the product of the ion ions from the reacting substance
Q <K = solution has not occurred precipitation, the ratio of the products to reactants is less than the ratio at equilibrium. The reaction moved to the right (products)
Q = Ksp = saturated solution, exactly the precipitate will occur, the system at equilibrium
Q> K = sediment solution, the ratio of the products to reactants is greater than the ratio at equilibrium. The reaction moved to the left (reactants)
Keq = 6.16 x 10⁻³
Q for reaction N₂O₄(0) ⇒ 2NO₂(g)
![\tt Q=\dfrac{[NO_2]^2}{[N_2O_4]}](https://tex.z-dn.net/?f=%5Ctt%20Q%3D%5Cdfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2O_4%5D%7D)
Setup 1 :

Q<K⇒The reaction moved to the right (products)
Setup 2 :

Q=K⇒the system at equilibrium
Setup 3 :

Q>K⇒The reaction moved to the left (reactants)
Answer:Lithium atomic orbital and chemical bonding information. There are also tutorials on the first thirty-six elements of the periodic table includes: Li²O