Answer:
m = 4.7 μg
Explanation:
Given data:
density of acetone = 60.0 μg/L
Volume = 79.0 mL
Mass = ?
Solution:
Formula:
d = m/v
v = 79.0 mL × 1L /1000 mL
v = 0.079 L
Now we will put the values on formula:
d = m/v
60.0 μg/L = m/0.079 L
m = 60.0 μg/L × 0.079 L
m = 4.7 μg
So health risk limit for acetone = 4.7 μg
Thomson used a beam of negatively charged particles. Using a beam of particles and detecting the scattering of the particles after they hit gold foil.
Explanation:
- F Cl Br
- ionization energy decreases we move down the group
- so Br<Cl<F
2. Na K Li
- ionization energy decreases we move down the group
- so K<Na<Li
3. C N O F
- ionization energy increases as we move across the peroid
- so C<N<O<F
plz mark as brainliest if it helps
The two chemical elements that make up the <span>majority of our sun is :
"Hydrogen" and "Helium"
Hope this helps!</span>
Let us differentiate accuracy from precision. Accuracy is the nearness of the measured value to the true or exact value. On the other hand, precision is the nearness of the measured values between each other. So, for precision, select the student in which the measured values are very near to each other. That would be Student III. Now, for accuracy, let's find the average for each student.
Student I: (<span>8.72g+8.74g+8.70g)/3 = 8.72 g
Student II: (</span><span>8.56g+8.77g+8.83g)/3 = 8.72 g
Student III: (</span><span>8.50g+8.48g+8.51g)/3 = 8.50 g
Student IV: (</span><span>8.41g+8.72g+8.55g)/3 = 8.56 g
From the given results, the accurate one would be Students I and II. So, we make a compromise. Even though Student III is precise, it is not accurate. If you compare between Students I and II, the more precise data would be Student I. Therefore, the answer is Student I.</span>