1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maslowich
3 years ago
13

A 33 kg box sits at rest on a tabletop.

Physics
1 answer:
aleksandr82 [10.1K]3 years ago
5 0

Answer:

323.4N

Explanation:

Given parameters:

Mass of the box = 33kg

Unknown:

Normal force on the body  = ?

Solution:

The normal force of a body is the vertical force the body exerts on another body.

It is expressed as;

        Normal force  = mass x acceleration due to gravity

Acceleration due to gravity  = 9.8m/s²

Normal force  = 33 x 9.8  = 323.4N

You might be interested in
A man supports himself and the uniform horizontal beam pulling the rope with a force T.The weights of men and the beam are 883 N
artcher [175]

Answer:

T=502.5N

Ax=171.8N

Explanation:

The computation of the tension T in the rope and the forces exerted by the pin at A is shown below:

vertical forces sum = Ay + Tsin20 + T - 245 - 883 = 0

Now  

horizontal forces sum = Ax - Tcos70

Now Moment about B

-Ay × 4.8 + 245 × 2.4 + 883 × 1.8=0

Ay=453.6N

Now substitute in sum of vertical forces T=502.5N

Ax=171.8N

3 0
2 years ago
What molecule determines the characteristics a child will inherit from its parents?
Korvikt [17]

Answer:

A molecule called DNA (deoxyribonucleic acid) is passed from adult organisms to their offspring during reproduction. This molecule containsthe instructions for an organism to develop, grow, survive and reproduce.

8 0
2 years ago
A hippo drives 42 km due East. He then turns and drives 28 km at 25° East of South. He turns again and drives 32 km at 40° North
ch4aika [34]

Answer:

a) Please, see the attched figure

b) Total displacement R = (78.3 km; -4.8 km)

c) R = (78.4 km * cos (-3.5°); 78.4 km * sin (-3.5°))

d) The hippo is 78.4 km from his starting point.

The total distance traveled is 102 km

Explanation:

a)Please, see the attached figure.

b) The vector A can be expressed as:

A = (magnitude * cos α; magnitude * sin α)

Where

magnitude = 42 km

α= 0

Then,

A = (42 km ; 0) or 42 km i

In the same way, we can proceed with the other vectors:

B = ( Bx ; By)

where

(apply trigonometry of right triangles: sen α = opposite / hypotenuse and

cos α = adjacent / hypotenuse. See the figure to determine which component of vector B is the opposite and adjacent side to α)

Bx = 28 km * sin 25 = 11.8 km

By = 28 km * cos 25 = -25.4 km (it has to be negative since it is directed towards the negative vertical region according to our reference system)

B = (11.8 km; -25.4 km) or 11.8 km i - 25.4 km j

C = (Cx; Cy)

where

Cx = 32 km * cos 40° = 24.5 km

Cy = 32 km * sin 40 = 20.6 km

C = (24.5 km; 20.6 km)

Then:

R = A+B+C = (42 km + 11.8 km + 24.5 km; 0 - 25.4 km + 20.6 km)

= (78.3 km; -4.8 km) or 78.3 km i -4.8 km j

c) R = (78.3 km; -4.8 km)

The magnitude of R is:

magnitude = \sqrt{(78.3)^{2 }+ (-4.8)^{2}}= 78.4 km

Using trigonometry, we can calculate the angle:

Knowing that

tan α = opposite / adjacent

and that

opposite = Ry = -4.8 km

adjacent = Rx = 78.3 km

Then:

tan α = -4.8 km / 78.4 km

α = -3.5°

We can now write the vector R in magnitude and direction form:

R = (78.4 km * cos (-3.5°); 78.4 km * sin (-3.5°))

d) The displacement of the hipo relative to the starting point is the magnitude of vector R calculated in c):

magnitude R = 78. 4 km

The total distance traveled is the sum of the magnitudes of each vector:

Total distance = 42 km + 28 km + 32 km = 102 km  

3 0
2 years ago
Both independent and dependent clauses
Assoli18 [71]

Answer: have a subject and a verb

Explanation:

5 0
2 years ago
Read 2 more answers
A body is thrown up with a velocity of 78.4 m per second.How high will it rise and how much time it will take to return to its p
a_sh-v [17]

Answer:

The maximum height reached by the body is 313.6 m

The time to return to its point of projection is 8 s.

Explanation:

Given;

initial velocity of the body, u = 78.4 m/s

at maximum height (h) the final velocity of the body (v) = 0

The following equation is applied to determine the maximum height reached by the body;

v² = u² - 2gh

0 = u² - 2gh

2gh = u²

h = u²/2g

h = (78.4²) / (2 x 9.8)

h = 313.6 m

The time to return to its point of projection is calculated as follows;

at maximum height, the final velocity becomes the initial velocity = 0

h = v + ¹/₂gt²

h = 0 + ¹/₂gt²

h =  ¹/₂gt²

2h = gt²

t² = 2h/g

t = \sqrt{\frac{2h}{g} } \\\\t = \sqrt{\frac{2\times 313.6}{9.8} }\\\\t = 8 \ s

4 0
2 years ago
Other questions:
  • I need C,D,E,F,H please ​
    12·1 answer
  • 5. The aim of the Montreal Protocol is to protect the_____
    10·1 answer
  • A guitar string is fixed at both ends. If you tighten it to increase its tension, the frequencies of its normal modes will incre
    15·1 answer
  • What’s the role of moles in weathering??????? HURRY ASAP HURRY PLEASE⁉️⁉️⁉️
    6·2 answers
  • A swimming pool has the shape of a box with a base that measures 30 m by 10 m and a uniform depth of 2.5 m. How much work is req
    5·2 answers
  • A tennis ball traveling horizontally at a speed of 40 m/s hits a wall and rebounds in the opposite direction. The time Interval
    14·1 answer
  • When viewed in yellow light, an object that reflects all the colors of light will appear_____.
    15·1 answer
  • g The steam above a freshly made cup of instant coffee is really water vapor droplets condensing after evaporating from the hot
    10·2 answers
  • The big bang produced an imprint of leftover heat called _____. hydrogen cosmic heat CMB radiation redshift
    5·2 answers
  • Carolina (600 N) runs up the stadium (10 meters high) in 9.14 s. How much power did Carolina expend?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!