The heat (Q) required to raise the temp of a substance is:<span>Q=m∗Cp∗ΔT</span><span> where m is the mass of the object (25.0g in this case), Cp is the specific heat capacity of the substance (for water Cp = 1.00cal/gC, or 4.18J/gC,
and Dt is the change in temp.
You'll have to solve this twice, once with the Cp in calories, and once with the Cp in joules.
</span><span>1380.72 Joules</span>
Answer:
2.11 x 10²⁴ molecules.
Explanation:
- <em>It is known that every 1.0 mole of a molecule contains Avogadro's number of molecules (NA = 6.022 x 10²³).</em>
<em><u>Using cross multiplication:</u></em>
1.0 mole of H₂O contains → 6.022 x 10²³ molecules.
3.5 mole of H₂O contains → ??? molecules.
∴ 3.5 mole of H₂O contain = (3.5 mol)(6.022 x 10²³) = 2.11 x 10²⁴ molecules.
Molar mass Mg = 24.3 g/mol
1 mole mg ------------ 24.3 g
?? moles mg --------- 4.75 g
4.75 x 1 / 24.3 => 0.195 moles of Mg
hope this helps!
Answer:
Water uses adhesive forces that allow it to stick to certain surfaces such as glass.
Explanation:
When the angle between vertical direction and the glass wall is small, surface tension is stronger and the component of gravity perpendicular to the glass wall is small. The result of this causes water to stick to the side of a glass.
Hope this helps!
Answer:
The answer is
<h2>250 g</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
volume of object = 25 mL
Density = 10 g/mL
The mass of the object is
mass = 25 × 10
We have the final answer as
<h3>250 g</h3>
Hope this helps you