Answer : The rate constant at 785.0 K is, ![1.45\times 10^{-2}s^{-1}](https://tex.z-dn.net/?f=1.45%5Ctimes%2010%5E%7B-2%7Ds%5E%7B-1%7D)
Explanation :
According to the Arrhenius equation,
![K=A\times e^{\frac{-Ea}{RT}}](https://tex.z-dn.net/?f=K%3DA%5Ctimes%20e%5E%7B%5Cfrac%7B-Ea%7D%7BRT%7D%7D)
or,
![\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= rate constant at
= ![6.1\times 10^{-8}s^{-1}](https://tex.z-dn.net/?f=6.1%5Ctimes%2010%5E%7B-8%7Ds%5E%7B-1%7D)
= rate constant at
= ?
= activation energy for the reaction = 262 kJ/mole = 262000 J/mole
R = gas constant = 8.314 J/mole.K
= initial temperature = ![600.0K](https://tex.z-dn.net/?f=600.0K)
= final temperature = ![785.0K](https://tex.z-dn.net/?f=785.0K)
Now put all the given values in this formula, we get:
![\log (\frac{K_2}{6.1\times 10^{-8}s^{-1}})=\frac{262000J/mole}{2.303\times 8.314J/mole.K}[\frac{1}{600.0K}-\frac{1}{785.0K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7B6.1%5Ctimes%2010%5E%7B-8%7Ds%5E%7B-1%7D%7D%29%3D%5Cfrac%7B262000J%2Fmole%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B600.0K%7D-%5Cfrac%7B1%7D%7B785.0K%7D%5D)
![K_2=1.45\times 10^{-2}s^{-1}](https://tex.z-dn.net/?f=K_2%3D1.45%5Ctimes%2010%5E%7B-2%7Ds%5E%7B-1%7D)
Therefore, the rate constant at 785.0 K is, ![1.45\times 10^{-2}s^{-1}](https://tex.z-dn.net/?f=1.45%5Ctimes%2010%5E%7B-2%7Ds%5E%7B-1%7D)
P=18000000/6 zeros. not sure how to do rest
Answer:
Solubility is a chemical property referring to the ability for a given substance, the solute, to dissolve in a solvent. It is measured in terms of the maximum amount of solute dissolved in a solvent at equilibrium. ... The solvent is often a solid, which can be a pure substance or a mixture.
Explanation: