work done is product of force and displacement of point of application of force
so here we have to check the product of force and displacement both
Now we will put the least to maximum work in the following order
1. -A man exerts strenuous effort in pushing a stationary wall
2. -A flea pushes a speck of dirt 1 cm
3. -A farmer pushes a 2 kg wheelbarrow 20 m
4. -A cannon launches a 3 kg cannonball a distance of 200
5. -A 2000 kg car travels 400 m down a road
6. -Space shuttle Atlantis launches from the ground into near-Earth orbit
Year 1972
if I'm not wrong :)
Given:
m = 555 g, the mass of water in the calorimeter
ΔT = 39.5 - 20.5 = 19 °C, temperature change
c = 4.18 J/(°C-g), specific heat of water
Assume that all generated heat goes into heating the water.
Then the energy released is
Q = mcΔT
= (555 g)*(4.18 J/(°C-g)*(19 °C)
= 44,078.1 J
= 44,100 J (approximately)
Answer: 44,100 J
Answer:
0.911 atm
Explanation:
In this problem, there is no change in volume of the gas, since the container is sealed.
Therefore, we can apply Gay-Lussac's law, which states that:
"For a fixed mass of an ideal gas kept at constant volume, the pressure of the gas is proportional to its absolute temperature"
Mathematically:

where
p is the gas pressure
T is the absolute temperature
For a gas undergoing a transformation, the law can be rewritten as:

where in this problem:
is the initial pressure of the gas
is the initial absolute temperature of the gas
is the final temperature of the gas
Solving for p2, we find the final pressure of the gas:

Because it is physically true day really know that by just knowing it very well